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SUMMARY

In 2006, we published a paper that is based on the present report. Because of a restriction on the
number of printed pages, we had to omit a good part of the analysis. The omissions were so
extensive that even the author could not follow the mathematical trend when looking at the paper
a few years later. For this reason, we went back to the original notes and compiled this report that
gives a detailed account of the subject matter. In addition to aiding in understanding how the
results in the paper were obtained, this report can also guide the reader in extending the results to
other geometries, such as a circular or rectangular waveguide.

The problem we deal with here is the classical problem of radiation of a semi-infinite coaxial line
into a half-space. With respect to a rectangular coordinate system xyz, the coaxial line is along
the z-axis and originates at minus infinity. The inner conductor terminates at z = 0, while the
outer one opens up into an infinite plane perpendicular to the coaxial line. Details on the history
and bibliography of this problem are given in the aforementioned paper and will not be repeated
here. Our work on this problem differs from that of other works in that it is an exact formulation
of the problem in terms of boundary integral equations (BIES). The idea for this approach
originated in our work on scattering by an indentation on a ground plane®. Its main characteristic
is that the domain of the integral equations does not involve the infinite plane.

In this report, we not only provide the missing analysis for the geometry we just described but
we also present the problem in a more general setting. In Part 1, we derive BIEs for a monopole
over a perfectly conducting plane, driven by a coaxial line. The monopole may or may not be a
continuation of the center conductor of the coaxial line and can be quite general in shape. The
integral equations extend over the monopole, the opening to free space of the coaxial line and
over either the semi-infinite walls of the coaxial line or over a finite part of them and the inter-
wall spacing at the end of the finite part.

In Part 2, we employ the equations we found in Part 1 to the problem we presented in the paper.
We take advantage of the circular symmetry of the problem to reduce the vector integral
equations to three scalar equations. By expressing the unknown current densities in terms of the
natural modes of the coaxial line, we show that the problem can be reduced to solving a single,
scalar integral equation. We also derive expressions for the far fields in the half-space in which
the coaxial line radiates. In Part 3, we take advantage of the orthogonality properties of the
modal functions to convert the scalar integral equation into an infinite system of linear algebraic
equations. We also convert the coefficients of the system from double to single integrals and
proceed to show how to compute them. In Part 4, we provide detailed information on how we
compute the system of equations and consider four different coaxial lines for which we compute
a number of quantities of interest. In the last part, Conclusions, we summarize the work and offer
suggestions for further work.

1J.'S. Asvestas, “Radiation of a coaxial line into a half-space”, JEEE Trans. Antennas Propagat., Vol. 54, No. 6, pp.
1624-1631, (2006).

2 J. S. Asvestas and R.E. Kleinman, “Electromagnetic Scattering by Indented Screens,” IEEE Trans. Antennas
Propagat., Vol. 42, pp. 22-30, (1994).
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PART 1
INTEGRAL EQUATIONS FOR A MONOPOLE OVER A GROUND PLANE

ABSTRACT

In Part 1, we present a new approach to the problem of monopole radiation over an infinite,
perfectly conducting plane. The monopole is fed by an air-filled, infinite, coaxial line. The
approach we use is mathematically rigorous and physically exact. It leads to a system of
boundary integral equations (BIES) that can be solved numerically using well established
methods.

Part 1 has three chapters. In the first chapter, we derive BIEs that extend over the entire length of
the walls of the infinite coaxial line. The monopole is not physically connected to the center
conductor of the coaxial line. The BIEs involve the electric surface-current density as the
unknown.

In the second chapter, the geometry remains the same as in the first part but the BIEs extend over
the part of the walls of the coaxial line that border its connection to the infinite plane. This is
accomplished by introducing an additional unknown, namely, the magnetic surface-current
density. We show that the results of the first part can be obtained from the results of the second
by a series of transformations and we also derive formulas for the far field.

In the third chapter, we make the monopole a natural extension of the center conductor of the
coaxial line. We then use the results of the first two parts to obtain BIEs for this, more realistic,
case.

We point out that the shape of the monopole is quite arbitrary but that the BIEs are valid only
when all materials are perfectly conducting.
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CHAPTER 1
EQUATIONS EXTENDING OVER THE ENTIRE WALLS OF THE LINE
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1. INTRODUCTION

In this chapter, we formulate the problem of radiation by a monopole over a ground plane in
terms of BIEs. The ground plane is infinite and the monopole is fed by an infinite coaxial line.
This formulation is the foundation for the rest of the report and contains general comments that
will not be found elsewhere in this report.

We derive BIEs for the geometry of Figure 1.1. All surfaces are perfectly conducting. The
inner and outer radii of the coaxial line are a and b, respectively. The line supports only a TEM
wave which means that (references 1 and 2)

a+b

k <1 (1.1)

where & is the wavenumber of the time-harmonic (e*") electromagnetic wave in the line.

z=0

»
»

b

Figure 1.1. A cylindrical monopole over a ground plane, fed by a coaxial line.

The excitation of the line occurs at z = —oo and results in a TEM wave with fields
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ve'® YWwe™ .
e )=
b b
In| = |p In P
a a

where ¥ is the voltage of the inner conductor with respect to the outer, and Y is the free-space
impedance. We have also employed cylindrical coordinates (o,¢,z). Since the line is not

infinite, we also have an induced wave in the line with fields { E', H'}. The total fields {E',H'}
in the coaxial line are the sum of the generator and induced fields

Ef(r) = (1.2)

E=E‘+E, H =H*+H'. (1.3)

In the upper-half space, we have radiated fields { E",H"}. We proceed to determine these fields
by first deriving integral equations and then solving them numerically.
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2. INTEGRAL REPRESENTATIONS IN UPPER HALF-SPACE

In this section, we derive integral representations of the electromagnetic fields in the upper-
half space. From these representations, we will eventually obtain integral equations.

We apply Green’s second identity in the upper half-space of Figure 1.1, excluding the interior
of the monopole. Thus, the surface integrals will extend over the surface S and the infinite plane
z=0. There is also a surface integral over a hemisphere with center at the origin and whose
radius tends to infinity. We omit this integral since the radiating fields satisfy the Silver-Muller
condition and, hence, the integral will tend to zero as the radius of the hemisphere tends to
infinity. From Green’s second identity (reference 3, p. 509), we have

| {E (1) [Vx VT, (rr)]-[Vx V< E (1) ] rl(r,r')}dr/

D+
= {[n xE'(r) |- VxT, (r,r') =V < E'(r) - [ixT, (r,r')]}ds 2.1)
(z=0)uS
where D" is the whole upper-half space except for the region occupied by the monopole, and n

is the interior unit normal. The normal is equal to z at z=0 and points to the exterior of the
monopole on S. The dyadic I'; has the form

Ly (r,r') =—ikVx[g(r,r)I+g(r )] (2.2)

where g is the free-space scalar Green’s function

, efik‘rfr"
grr)=—"——+ (2.3)
47z‘r—r
and
I=xx+y+zz, I=xx+yy-zz (2.4)

are the identity dyadic and its image about the xy-plane. Moreover, for any vector a, we define its
image a; about the xy-plane by

a:(ax,ay,az)<:>ai=(ax,ay,—az). (2.5)
The dyadic I'; satisfies the differential equation

VxVxT,(r,x")=k’T, (r,x')=ikV x[5(r,r)1+5(r,r)) L] (2.6)
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and the boundary condition

zxIT(r,r)=0 atz=0. 2.7)
The electric field satisfies the reduced wave equation

VxVxE (r)—k’E (r) =0 (2.8)
and the boundary conditions

nxE'(r)=0, reS; zxE'(r)=0, re{(x,y,2): z=0, (x,y) ¢ o} (2.9

Substituting (2.6) and (2.8) in /., the left-hand side of (2.1), we find

D

1, =ik [ {E"(€)-Vx[5(r,r) T+ 5(r )L ]}V

H
= ikV'x [ E"(r)&(r,x)dV +ik[V)x [ E" (r)S(r,x))dV] 1, = kzz{
D* D*

Substituting (2.7) and (2.9) in 7, the right-hand side of (2.1), we find

= j[ﬁxE’(r)]-v x T, (r,r")dS +ikZJ‘H’ (r)-[AxT,(r,r")]ds . (2.11)
o S
Combining the last two results, we find that

j[ngf(r)]-vxrl(r,r')ds—ikzj[ﬁfo(r)]-rl(r,r')ds=kzz{; ’ g (2.12)

o

This is the integral representation of the magnetic field in the upper-half space. If we use the
definition of the dyadic from (2.2), we can write it as

2 j [ZxE(r) ][ VVg(r,r)+ K g(r,r)y, |dS

') , z>0

. . , . | H(r
_ikZ l {[n xH'(r) |x Vg(r,r') + ([ 7 x H'(r) ] Vg(r.r) }ds —ikZ{ ], <0 (2.13)

; L
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3. INTEGRAL REPRESENTATIONS INSIDE THE COAXIAL LINE

We proceed to find a representation of the magnetic field inside the coaxial line. We apply
Green’s second identity to the region D of Figure 3.1. In the z-direction, this region extends
between z =—d and z=0. In the lateral direction, it is bounded by the walls of the coaxial line.

Thus, the four surfaces that bound D are 7, o, S, and S, . The normal is directed into this region.

z

!

/ S
o h o
z=0
D D
S > n <«s, Sa—>fz<— s,
— z=-d
T T
—>
a
b

Figure 3.1. The region D of application of Green’s second identity.
Let
m=0cUrtuUS, US,. (3.1)

We can use the same identity as for (2.1) to obtain an integral representation for the total
magnetic field in D; thus,

[{E () [Vx VXD, 1)] - [ VXV E (1) |- T(r,r)} @V

D
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= J{[ﬁ xE' (r)] VxI(r,r")+ [ﬁ xVxE' (r)] I(r, r’)} ds
where T' i: the free-space dyadic Green’s function, defined by
L(r,r') = —ikV x[g(r,r")I]
and satisfying the differential equation

VxVxT(r,x")—k’T (r,x') =ikV x[5(r,r")]].

3.2)

(3.3)

(3.4)

The total electric field in D satisfies the reduced wave equation (2.8) and the boundary condition

nxE'(r)=0, reS,uUs,.
As with (2.1), the volume integral 7, in (3.2) yields

I K*ZH'(r'), r'eD
P 0, re¢D

while the surface integral /_ becomes

I, =-ikz | {[ﬁxH’(r)]-r(r,r')}dS

S, S,

+ J {[ﬁxE’(r)]'VxF(r,r')—ikZ[ﬁXHt(r)]'r(r’r')}dS'

ot

Combining the last two statements, we have that

I[fsz’(r)]Vxl"(r,r')dS
: A i , K*ZH'(r'), r'eD
—szl{[an(r)]-F(r,r)}dS={ 0 FeD

With the definition of the dyadic in (3.3), this becomes

I [ﬁ x E' (r)] : [VVg(r,r') + kzg(r,r')I]dS

]t [ 7D

This is the integral representation of the magnetic field in D.

0, r'eD

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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4. ELIMINATION OF THE ELECTRIC FIELD

In these section, we eliminate one of the unknowns, the electric field, from the magnetic field
integral representations.

When z'>0, we get from (3.9) that

j [ZxE'(r) |- VVg(rr)+kg(r,r)]dS = j [ZxE'(r) |- VVg(r.r)+k*g(r,r)|dS

o

~ikZ {[ﬁx H' (r)]xvg(r,r')}ds , >0, (4.1)

Since the electric field is continuous in crossing o, we can substitute this in the top line of (2.13)
to get

2[[2xE (1) ][ VVg(r,r) + K g(r,X) | dS —i2kzZ | {[ﬁx H' (r)]xvg(r,r')}ds

—ikzj{[ﬁxH’(r)}xvg(r,r')+([ﬁxHr(r)]xvg(r,rg)}dS:ikZH"(r'), reD'. (4.2)

In a similar way, we can substitute the bottom line of (2.13) in the top line of (3.9) to get

I[E xE' (r)] : [VVg(r, r)+kg(r, r')I] ds

_”‘ZZ {[n < H () [ Vg (r,r) + ([ H (1) ]« Ve(rr)) }ds

i
N

—ikZi{[ﬁ xH' (r) ] x Vg(r,r')} ds = ikZ{Hf (r') + ;[H (ri')l} . r'eD. (4.3)

These two expressions give us an integral representation of the magnetic field everywhere. The
integrals over o do not involve the electric field.

We can go a step further and eliminate the electric field altogether. On the annular disk z, we

have that z = —d . We can show that, as d — o, the integral over rtends to zero as 4. Taking
this limit, we can write

_ l‘{[ﬁx H' (1) < Vg () + ([ H (1) ]x Vg (r.r)) }ds

i

—2]{[;2 xH' (r) | Vg(r, r')} dS=H’ (r') ,r' e D’ (4.4)

and
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_;J.{[ﬁ xH" (r)] xVg(r,r')+ ([ﬁ < H" (r)] X Vg(r,ri’)) }dS

i
N

—I{[ﬁ xH' (r)] xVg(r, r')} dS=H'(r")+ ;[H’ (rl.’)l , r'eD. (4.5)

In the last two expressions, the region D extends over the entire space between the walls of the
coaxial line.

For convenience, we define electric current densities on the various surfaces

J,(r)=nxH'(r), res, (4.6)
J,(r)=nxH'(r),res, 4.7)
J (r)=-zxH'(r),reo (4.8)
J,(r)=nxH(r),res (4.9)

and substitute in (4.4) and (4.5)

-2{ j J (r)xVg(r,r')dS + j J, (r)x Vg(r,r')dS + j J_(r) ng(r,r')dS}

—I{JS (r)xVg(r,r') +[J; (r)x Vg(r,r)] }dS =H'(r') , r'eD" (4.10)

—{J‘ J, (r)xVg(r,r)dS + IJb (r)xVg(r,r)dsS + IJU (r) x Vg(r,r')dS}

—;J{Jg (r)xVg(r,r')+[Js(r) Vg(r,rl,’)]i}dS =H'(r") +;H"i (r)), r'eD. (411)

N

These are the two integral representations for the magnetic field in terms of the unknown current
densities. Equation (4.10) clearly displays the dependence of the radiated fields on the fields
inside the coaxial line. Conversely, Equation (4.11) displays the dependence of the total fields
inside the coaxial line on the geometry of the monopole and the resulting currents on it. Both
expressions indicate the existence of a ground plane through the presence of the image of the
gradient of the scalar Green’s function. We will use these integral representations next to obtain
integral equations for the unknown current densities.

10
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5. INTEGRAL EQUATIONS ON 1 AND §

The derivation of integral equations for the four unknown current densities is based on a
theorem of Muller (reference 4), Theorem 46, p. 205). If we have a region D bounded by a
closed surface S, with the unit normal n pointing in the exterior (away from D), and if the
surface current density J on S is continuous, then at any point r’ of S (with normal »') we have
that

N

i [[3(r) x Ve 1)) dS = iiJ(r’) + ' [[I()x Vegr, )| ds (5.1)

where the expression on the left is to be interpreted in the sense of a limit, i.e., in the limit as we
approach the surface from its exterior (.S, ) or interior (S,).

If we apply this theorem to (4.10), with the point r' on S and the approach from the exterior,
we get
—2i' { j J (r)xVg(r,r')dS + j J, () x Vg(r,r')ds + j J_(r)x Vg(r,r')dS}
S, Sy o

—n'x I{Js(r) xVg(r,r')+[J (r) x Vg(r,ri')]i}dS = ;JS (r'), r'es. (5.2)

S

Again using (4.10), we approach a point on o
z'x {I J, (r)xVg(r,r)dsS + _[ J, (r)xVg(r,r')dS
S, Sp

+ I{Js (r)xVg(r,r)+ [JS (r)x Vg(r, ri')]i } dS}

N |-

+2’xI[JG(r)ng(r,r’)]dS:JJ (r'), reo. (5.3)

[e3

We note that we can also use (4.11) to obtain this last result. We also observe that

Vg(r,r')=Vg(r,rx/), z'=0 (5.4)
and that
zx[J, () xVg(r,r)]=J_(r) 0”gg‘Z,r’) ~[2-3,(®)]Vg(rr'). (5.5)

11
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The last term here is zero because the current density does not have a z-component. Also, the
derivative of the scalar Green’s function with respect to z is equal to zero when z=z"=0. Thus,
in place of (5.3), we have

Zx { [ 35, ()< Ve(r,r)ds + [ I (r)x Vg(r,r)ds + [ I, (r) ng(r,r')dS} =J_(r) r'ec

s, S

(5.6)

We can also use (4.11) to obtain integral equations on the walls of the coaxial line. If the
geometry is exactly as shown in Figure 2, then there is no problem. If, however, the geometry is
more general, then we cannot use (4.11). As an example, consider the case where the radius of
the monopole is greater than 4. Then, for a point of S, or S, with z-coordinate between —4 and —

(h + 1), the point r/ is inside the monopole, where the radiated magnetic field is not defined. For
this reason, we develop a new representation for the magnetic field inside the coaxial line.

12
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6. A SECOND REPRESENTATION OF THE MAGNETIC FIELD INSIDE
THE COAXIAL LINE

For reasons presented at the end of the last section, we proceed to obtain another
representation of the magnetic field inside the coaxial line. In place of (3.2), we write

| {E (1) [VxVxT,(r,r)] - [ Vx V< E' (r)]-Fz(r,r')}dV

D
= j{-Et(r)-[ﬁvar2 ()] +[AxV=E (r)]-l"z(r,r’)}dS . r'eD (6.1)

where the Green’s dyadic of the second kind is defined by

L,(rr") =-ikVx[g(r,r)1-g(r,r)1] (6.2)
and satisfies the differential equation

VxVxT,(r,r')=k’T, (r,r')=ikV x[5(r,r") I-S(r,r) L] (6.3)
and the boundary condition

zxVxT,(r,r)=0 atz=0. (6.4)

In place of (3.6), we then have

I, =kZH'(r"), r'eD (6.5)
and, in place of (3.7),

I = _[{—E (1) [Ax VT, (r,r)]+[ Ax V< E'(r) | -Fz(r,r')} ds. (6.6)

[

As in Section 3, the surface integral over z vanishes as d — o. Because of (6.4), the first term
vanishes over o. It also vanishes over the walls of the coaxial line since the tangential component
of the total electric field is zero there. We are thus left with

I = —ikZ{ j 3 (r)-T,(r,r")ds + j J,(r)-T,(r,r')ds + j J_(r)-T,(r, r')dS} . (6.7)
Combining (6.5) and (6.7), we find

j J (r)-T,(r,r')dS + j J,(r)-T,(r,r')ds + IJG(r)-FZ(r,r')dS=ikH’(r'), reD  (6.8)

13
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and, if we take definition (6.2) of the dyadic into consideration,

—[{9.0)xVe(r,r)=[J,(r)x Ve(r,r)] | S - [ {J,(r) x Ve(r,r) ~[J, (r) x Ve(r.x)] | S

Sy

- j {3,00)xVe(r,r)-[J,(r)xVe(rr)] }dS =H'(r'), r'eD. (6.9)
Buton o
J_(r)xVg(rr')- [JG (r)x Vg(r,ri’)]i =2J_(r)xVg(r,r'), z=0. (6.10)
Thus,

~[{I. ) xVer,r) ~[J, ()< Verx)] }ds - [ {J, () x Ve(r,r) ~[J, (r) x Vg (r.x)] | S

Sy

-2 j J_(r)xVg(r,r)dS=H'(r"), r'eD. (6.11)

This is the second representation of the magnetic field inside the coaxial line.

14
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7. INTEGRAL EQUATIONS ON THE WALLS OF THE COAXIAL LINE

In this section, we use the integral representation of the magnetic field that we obtained in the
last section to get integral equations on the semi-infinite walls of the coaxial line. To this end, we
employ (5.1) and (6.11). In the approach to the inner wall we get

—i' j {3,00)xVg(r,r) - [3,(r) x Vg(r,r)] | dS

Sa

— 7' x j {3,00)xVe(r,r)—[J,(r)x Ve(r,r))] }ds

Sp

—2ﬁ’xIJG(r)ng(r,r’)dS=;Ju (r), r'es, (7.1)
while in the approach to the outer
i x j {3,00)xVg(r,r) - [3,(r)x Vg(r,r)] | dS
Sa
it [{J, (1) x Vg (r,r') = [, (r) x Ve (r,r)] | S
Sp
—2ﬁ’xIJG(r)ng(r,r’)dS=;Jb(r'), res,. (7.2)

Following this approach, we can ask what happens to (6.11) as the observation point r’
approaches o. If we can get an integral equation on o, then, together with (7.1) and (7.2), we will
have three equations in three unknowns and, thus, we will be able to solve for the three current
densities. We note, however, that none of these three equations contains information about the
upper-half space. This says that the geometry of the upper-half space does not influence the
behavior of these currents, which does not seem to be correct. We proceed to perform this
calculation. First, we cross (6.11) with the unit normal on o

j%x {J,)xVg(r,r)-J, (r)xVg(rr)}dS

Sﬂ

+ I z2x{J, (r)xVg(rr)—J,(r)xVg(r,r)}dS

Sp

+2J.2><[JU (r)xVg(r,r)]dS=J_ ('), r'eD. (7.3)

In the first integral above, only the components transverse to the z-axis are involved; hence, we
can write instead

Ifx {J,)xVg(r,r)-J, (r)xVg(rr)}dS

15
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= [{3,0)2-V[gr,r) - g(r,r)]-[2-3,(0)]V[g(r.r) - g(r,r))]} S (7.4)

which is equal to zero because of (5.4). The same is true about the second integral in (7.3). As
the observation point approaches the surface, we apply (5.1) to the remaining integral to get that

IEx[JG(r)ng(r,r')]dS:O, r'eo (7.5)

o

with the last statement also following from (5.5). Thus, we have the identity 0=0 or that we
cannot obtain an integral equation from (6.11) when the observation point is on the surface o.

16
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8. THE SYSTEM OF INTEGRAL EQUATIONS

We have four unknowns, namely, the electric current densities defined in (4.6) through (4.9).
With these, we associate the integral equations (5.2), (5.6), (7.1), and (7.2). A drawback of this
system is that the surfaces S, and S, are semi-infinite in the z-direction and, hence, they will
have to be terminated in any typical boundary-element scheme. For this reason, in Part 11 of this
study, we return to the scheme where the parameter 4 is finite and see whether we can expand
the system of integral equations to accommodate a magnetic current density.

One remark we wish to make is that (5.6) can also be obtained using the approach suggested
by Hansen and Yaghjian (reference 5). Here, the region of application of Green’s second identity
is the interior of the coaxial line and the entire upper-half space except for the region occupied
by the monopole (Figure 3.1). If, with it, we use the free-space Green’s function in (3.3) we get

—.[J(r)ng(r,r’)dS=H(r'), reDUD’, @w=S5,US,Uc‘US (8.1)

where o stands for the metallic part of the xy-plane. Writing this compact statement out, we
have

—I J . (r)xVg(r,r')dS - I J, (r)xVg(r,r')ds - I J, (r)xVg(r,r)dS
“ H'(r'), r'eD’

H'(r'), r'eD ®2)

— ,[JS (r)xVg(r,r)dS = {

where
J . (r)=zxH(r), reo’. (8.3)

In passing, we mention that, in (8.1), there should also be present an integral over a hemisphere
with center the origin and a radius that tends to infinity. In the limit, however, this integral
vanishes because the radiated fields obey the Silver-Muller radiation conditions. If this were a
problem in scattering by a plane wave, as in reference 3, then we would have to use a stationery
phase method to show that the integral vanishes. This is because a plane wave does not satisfy
the Silver-Muller radiation conditions. Besides the scattered fields, the sum of the fields of the
incident and reflected plane waves would appear in this integral.

If r e o and we pre-cross (8.2) with the unit normal along the z-axis, then the surface integral
over o becomes zero for the same reason as (5.5), and we get

Zx { j J (r)xVg(r,r')ds + ij(r) x Vg(r,r')dS + j J(r) Vg(r,r')dS} —J_(r),r'ec

(8.4)

17
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which is identical with (5.6). We note that this is the only occasion in which the surface integral
over the metallic part of the xy-plane is zero; otherwise, (8.2) could be used to obtain integral
equations over the whole structure.

Another remark is that, in the formulation resulting in (8.1), instead of the free-space Green’s
dyadic we can use the one in (2.2). Because of the property (2.7), the integral representation will
not involve a surface integral over o°. Proceeding as in Section 2, we get in place of (2.13)

~[ {3, 0)x Vg (r,r) + [, (1) x Vg(r.x)] | dS
— [{3, @) x Vg (r,r) +[J, (1) x Vg(r,r)] }dS

i

—~ I{J” (r)xVg(r,r')+[J, () x Vg(r,r)] }dS =H(r')+H,(r/), r'eD"UD (8.5)

where H stands for the total magnetic field in either of the two regions. This statement is not
entirely correct. For example, if r'=(p' > b,¢',z' > 0), then r/ does not belong to the region of

integration D and the last term in (8.5) should be equal to zero. We can correct for this by
introducing characteristic functions and writing a separate statement for each of the two regions.
For example, in the upper region

~[ {3, 00)x Vg (r,r) +[J; (1) x Vg(r.x)] | dS
— [{3, @) x Vg (r,r) +[J, (1) x Vg(r,r)] } dS

_ j {Jb (r)xVg(r,r) +[J, (r)xVg(r,r)] } dS=H"(r')+ z, (rl.')[H’ (rl.’)]. , r'eD" (8.6)

l

where y,, the characteristic function of the region D, is defined by

1,
o (r)Z{O, :,Zl;- 8.7)

Still, we have to worry about the image point being on the boundary of D (the walls of the
coaxial line). We can write a statement similar to (8.6) when the observation point is in D, with
the same concerns.

The problem with an expression like (8.6) becomes evident when we try to obtain integral
equations. The image of a point of S may correspond to a point somewhere in D. Thus, we may

generate unknowns not only on the metallic boundaries but, also, in the regions D and D" . This
IS quite unacceptable and we abandon this approach.

18
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CHAPTER 2
EQUATIONS EXTENDING OVER PART OF THE WALLS OF THE LINE
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1. INTRODUCTION

In Chapter 1, we derived BIEs for the geometry of Figure 1.1. All surfaces are perfectly
conducting. The ground plane is infinite and the coaxial line extends to infinity in the lower-half
space. The inner and outer radii of the transmission line are a and b, respectively. The line
supports only a TEM wave which means that (references 1 and 2

k“;b<1 (1.1)

where £ is the wavenumber of the time-harmonic (e**") electromagnetic wave in the line.

z=0

»
»

b

Figure 1.1. A cylindrical monopole over a ground plane, fed by a coaxial line.

The excitation of the line occurs at z = — and results in a TEM wave with fields
—ikz —ikz
Ve YVe n (1.2)

(b) bi Hg(r): (b) ®
In| = |p In| — |p

where V' is the voltage of the inner conductor with respect to the outer, and Y is the free-space
admittance. We have also employed cylindrical coordinates ( p,@,z). Since the line is not

Eé(r) =
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infinite, we also have an induced wave in the line with fields { E', H'}. The total fields {E',H'}
in the coaxial line are the sum of the generator and induced fields

E =E‘+E, H =H®+H'. (1.3)
In the upper-half space we have radiated fields {E",H" }.

The integral equations we derived in Chapter 1 on the walls of the coaxial line, extend over the
entire (infinite) length of the line. Here we will develop a system of integral equations that will
extend over a portion of the walls of the line. The region under consideration is shown in Figure
1.2. Inside the line, we will develop integral equations extending no deeper than z =—d . In the
process, we will use a number of results of Chapter 1. Equation numbers from there will be
preceded by the Roman numeral 1.

A

/ S
o h o

z=0
D D
S > n <«s, Sa—>ﬁ<— s,
— z=-d

T T

—>

v

b

Figure 1.2. The region D of application of Green’s second identity.
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2. INTEGRAL REPRESENTATIONS IN THE EXTERIOR AND INTERIOR
For convenience, we define electric and magnetic current densities on z by
J.(r)=zxH'(r) , M_(r)=-ZzxE'(r) , rer (2.1)
From (1.4.2)
2[[2xE (1) ][ VVg(r,r) + K g(r, K| dS —i2kZ | {[ﬁx H' (r)]xvg(r,r')}ds

—ikZHJS (r)xVeg(r,r') +[J(r)x Vg(r,r)]. } dS =ikZH" (r'), r'eD". (2.2)

The surface @ is defined in (1.3.1). Taking into consideration the current density definitions
(1.4.6)-(1.4.9) and the ones above, we write

-2 j M. (r)-[ VVg(rr)+k g(r,r)I]ds

—i2kZ{I J (r)xVg(r,r')dS + j J, (r) x Vg(r,r')ds + j J_(r)xVg(r,r')dS + j J_(r) ng(r,r')dS}

—ikZHJS (r)xVg(r,r') +[J;(r) Vg(r,rl.')]i } ds =ikZH" (r'), r'eD". (2.3)

We next complete (1.6.7) by supplying the integral over zfrom (1.6.6)
I = _.[Mf (r)-VxT,(r,r")dS
—ikz{ j J (r)-T,(r,r')dsS + j J,(r)-T,(r,r')ds
S, Sp
+ j J_(r)-T,(r,r')ds + j J_(r) -Fz(r,r’)dS} (2.4)

Using (1.6.5) together with this, we get

—ikZ{ [3,00) T, (r,x)dS + [ 3, () - T, (r,0)dS + [ I, (r) T, (r,r)dS + [ I (r) -Fz(r,r')dS}

- j M _(r)-VxT,(r,r')dS =k’ZH (r'), r'eD. (2.5)
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By the definition (1.6.2) of the dyadic, the last integral in this becomes
j M _(r)-VxT,(r,r')dS = —ik j M, (r)-{VVg(r,r') + Kg(r,r)I-V[Vg(r.r))] —k°g(r.r))L}dS

= —ik j M, (r)-V{Veg(r,r)—[Vg(r,r)] | dS - ik’ j {gr.rIM, (r)—g(r.K)[M,(r)]} dS

(2.6)

For the first integral on the right, we use the divergence theorem to write
J-Mr(r)~V{Vg(r,r’) —[Vg(r,ri')]l_}dS
= [{v[M.0)(Vetr.r) ~[Ve(r )] ) |- V- M, (1) (Ve(rr) - [Ve ()] ) ds
= [V M, (r)(Vg(r,r) - [Vg(r,r)] )ds - j VM, (r)(Ve(r,r') - [Vg(r,r)] )ds . (2.7)
4 T

The contour yis composed of the two contours that constitute the boundary of z. The unit normal
v on yis equal to the negative of the normal on each of the two walls of the coaxial line. The
component of the magnetic current density along it is, by (2.1), the tangential component of the

total electric field on each wall. Its value there is zero. Thus, the contour integral is equal to zero,
and we have that

JMT (r)-VxT,(r,r")dS

=ik [V-M, (r)(Ve(r,r) - [Ve(r.r)], )dS - ik [{g(r,r)M, (r) - g(r.£)[M, (r)] } 5 .(2.8)

T

Substitution of this and (1.6.11) in (2.5) gives

_I {Ja (r)xVg(r,r")—[J,(r)xVg(r, ri’)]i} ds — j {Jb (r)xVg(r,r')=[J,(r)x Vg(r,r)] } ds

Sy

~2[3, (1) x Vg(r,r')dS ~ [ {3, (r)x Vg (r,r) - [J, (1) x Vg (r.r)] | dS
+ ZZJV M, () (Ve ) ~[Ve(rr)] s —iky [{g(r r)M, (1) - g(r.x) [M, ()] S
=H'(r'), r'eD. (2.9)

This is the total magnetic field representation in D. We proceed to get one for the total electric
field. We begin with Green’s second identity

HH (r) [Vx VX, (r,r)]-[Vx V= H'(r) ] -Fl(r,r')} dv

D
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= {[ﬁ xH'(r) |-V xT,(r,x) + ikY [ A x E (r)]-rl(r,r')}ds . r'eD. (2.10)
The Green’s d;adic of the first kind is defined in (1.2.2). For the volume integral, we get
I, =—k*YE'(r'), r'eD. (2.11)
From (1.2.2)
[[AxH (r)]- VxT,(r,r)ds
i —ikﬂﬁ x Ht(r)] : V[Vg(r,r') + (Vg(r,rl.'))i]dS
) —iksf[ﬁ X H’(r)] [g(r, )L+ g(r,x)L]dS

= ik j v-[axH (r) | Ve(r.r) +(Ve(r.r)), |ds.

—ik3j[ﬁ x H' (r)] [g(r,r)I+ g(r,x))L]dS . (2.12)

The surface divergence theorem has been applied above to the closed surface @. The result is, of
course, zero. For the remaining term in (2.10)

j [AxE(r) |- Ty (r,r)dS = - j M_(r)-T,(r,r)dS = ik j M, (r)-V x[g(r, )L+ g(r,r))L, ]dS

w

= ik j (M, (r)x Vg(r,r') +[M, (r) x Vg(r,r)]. } S (2.13)

In arriving at this result, we have taken into consideration the fact that the total electric field is
zero on the walls of the coaxial line and that the tangential component of the dyadic is equal to
zero on the z =0 plane. Substituting the above results in (2.10), we get

[V D @ ][Ver) +(Va), Jas wikz [ H )] [ae )+ gt Jas

+ j {M, (r)x Vg(r,r') +[M, (1) xVg(r,r)] }dS =E'(t'), r'eD. (2.14)
Moreover, breaking the first and second integrals into their constituent parts

{j V- [3,0)][ Ver,r) +(Ve(r,r)), |ds + j V-[J,®)][ Vel r) +(Ver.r)), |ds

b
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+[V-[3.0][Velr.r)+(Ver.r)), |ds +2[V-[J, (r)]Vg(r,r')dS}
+ikz{ [{gCr.r)3,(0)+ g(r,x)[I,(0)] }dS + [{g(r,r)T, (1) + g(r,x) [, ()] }dS
+[{ew ) (1) +g(r,x)[3, ()] }dS +2[ g(r,r)d, (r)dS}

+I{MT (r)xVg(r,r')+[M, (r) x Vg(r,rl.’)]i}dS =E'(r"), r'eD. (2.15)

This is the integral representation for the electric field.
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3. INTEGRAL EQUATIONS ON [

From (1.5.1) and (2.10), we get that

—%x j {3,00)xVe(r,r)-[J,(0r)x Vg(r,r)] }dS

—2x [{J, (1) x Vg (r,r') = [, (r) x Ve (r,r)] | dS - 2zij (r)x Ve(r,r')dS

Sy

_zxj{ T(I‘)XVg(r,r)—[ T(r)xvg(r’ri)]i}
+iZ§ X IV-MT(r)(Vg(r,r’) —[Vg(r,ri’)]i)dS

—ikY? x I{g(r,r’)MT (r) - g(r,x)[M,(r)] }dS = ;JT ), r'er.

We can simplify this expression considerably. For the third term, we write

-2z % IJ" (r)xVg(r,r')dsS = —2_[J(7 (r)&gg’r')dS

V4

while for the fourth
~2x{J, (1) x Vg(r,r)=[J,(r)x Vg(rr)] } = -2 x[J, (r) x Vg (r,r")]

oz

+2x{[2fo (r)]ng(r,ri’)} :_Jr(r)é’gg;r') {Ht( )O"g(l‘l‘)}l

=-J (r ){Qg(rzr) ag(al‘zl")} 3 (r )Og(r x)

Thus, in place of (3.1), we can write
—ZX j {Ja (r)xVg(r,r)- [Ju (r)xVg(r, ri’)]i} ds
Sa

—Zx J.{Jb(r)xvg(l',r')—[Jb(l')XVg(r'ri')]i}dS_zj'Ja(r)&g;l;r')ds

Sy

+jJ()5g(”) jv M. (r): x(Vg(r,r') - Vg(r,r)))dS

—ikﬁxIMT(r) g(r,r')—g(r,x)]ds =;Jr(r ), r'er.
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This is the integral equation for the electric current density on z For the magnetic current
density, we have from (2.15)

_"fgx{ [V-[3,0][ Velr.r)+(Ver.r)), |dS + [ V-[J,m)]] Velr.r) +(Ve(r.r)), |dS

Sp

+[V-[3.0][ Velr,r)+(Ve(r,r)), |as+2[V-[4, (r)]Vg(r,r’)dS}

+ikZE x { [{2@r.r)3,(0)+g(r,r) [T, ()] }dS + [{g(r,r)T, (1) + g(r,x) [, ()] }dS

Sa Sh

+ j {gr,r) I () +g(r,e)[J,(r)] }dS +2 j g(r,r)J, (r)dS}

+Zx j{MT(r) xVg(r,r')+[M,(r) ng(r,r,.')]i}dS = —;Mr(r') , r'er. (3.5)

We can re-write this as
{IV L(O)]Z2x[Vg(r,r)+Vg(r,r))]ds + IV ,(0)]Z2x[Ve(r,r')+Vg(r,r)]ds
+ IV (I, (M) ]2x[Ve(r )+ Vg(r,r)]dS + ZIV (I, (r)]Zx Vg(r,r')dS}

+ ikZ{I ExJ, () [g(r,r) + g(r,x))]dS + jgx J,(0)[g(,r) + g(r,r)]ds

+ IE xJ.(r)[gr,r) +g(r,r)]dS + ZIg(r,r')E xJ_ (r)dS}

5g(r r) 1 ,

+jM (r) ds == M. (), r'er. (3.6)
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4. SYSTEM OF INTEGRAL EQUATIONS

Besides the integral equations (3.4) and (3.6), the system of equations will include equations
from the rest of the structures that make up the problem. Using the procedures of Chapter 1, we
get from (2.9) that

—A'x j {3,(0)xVg(r,r) = [3,(r) x Vg(r,r)] | dS

—A'x j {3,00)x Ve(r,r) = [J,(r) x Vg(r,r)] } dS — 27" x j J_(r)xVg(r,r')ds

Sp

—n'x .[{Jf (r)xVg(r,r')—[J, (r) x Vg(r,ri’)]l_}dS

T

" Zﬁ’XIV'Mf () (Ve(rr)~[Ve(r.r)] )ds

— ikYn' x j{g(r,r')M, (r) - g(r,x)[M,(r)] }dS = ;Ja ), r'es (4.1)

a
T

and

—A'x j {3,(0)xVg(r,r) = [3,(r) xVg(r,r)] | dS

Sﬂ

—A'x j {3,00)xVe(r,r) = [J,(r) x Vg(r.r))] } dS - 27" x j J_(r)xVg(r,r')ds

Sp

—n'x .[{Jf (r)xVg(r,r')—[J, (r) x Vg(r,ri’)]l_}dS

" Zﬁ’XIV'Mf () (Ve(rr)~[Ve(r.r)] )ds

—ikYn' x I{g(r,r')Mr(r) —~ g(r,r,.')[MT(r)]i}dS = ;Jb (r), r'es,. 4.2)

T

From (1.4.2)

k2 x [ M, (r)g(r,r)ds + ’Zs < [ M, (1) VVg(r,r)ds

—Zx {I J, (r)xVg(rr)dsS + IJb (r)xVg(r,r)dsS + J-JT (r) x Vg(r,r')dS}

—ExJ.JS(r)ng(r,r’)dSz—Ja (r) , rec (4.3)
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and

2ikYn' x JM, (r)g(r,r')ds + Zfﬁ’ X IMT (r)-VVg(r,r)dS

Sy

—2n'x {J. J, (r)xVg(r,r)dS + IJb (r)xVg(r,r")dS

+ IJJ (r)xVg(r,r)dS + IJT (r)xVg(r, r')dS}

—n'x [{J (r)xVg(r,r)+|J,(r)xVg(r,r)]| dS=£JS r'), r'eS.
[ ! 2

N
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5. REMARKS

We have some concern here as to whether the equations we just derived are the right ones for
determining the unknown currents. We will not know the answer to this until we compare
numerical results between this system and the one of Chapter 1. If this system provides the
correct answers, then it is the preferred one because it also provides substantial computational
savings if we keep 4 small. We note that, in this formulation, current densities are assumed
piecewise differentiable in the interior of the line. In Chapter 1, it is sufficient that these currents
are continuous.

Equations (2.5) and (2.14) give the fields in the interior of the coaxial line. They are the result

of applying Green’s second identity in the region bounded by the closed surface @, defined in
(1.3.1)

m=0cuUruUS, US,. (5.1)

We make two remarks. The first is that the integral over the surface 7 (z = —d ) can be converted
to an integral over the two cylindrical surfaces that join this surface to the identical disk at
z=—o. Indeed, the walls and the two disks make up a closed surface. Application of the
appropriate Green’s second identity (in each of the two cases), with the observation point outside
this surface (—d < z' <0), leads to the result that the integral over 7 is equal to the integral over
the other three surfaces. As remarked in I, the integral over the disk at infinity is equal to zero;
hence, the conclusion that the integral over 7 is equal to the same integral over the cylindrical
walls extending from — 4 to —oo. In the process, the terms involving the circumferential
components of the electric field drop out, because the walls are perfectly conducting, and we
end-up with the same representations as in Chapter I. We see, then, that we can start with the
present case and, as a corollary, derive the equations in Chapter I.

The second remark is, that when we use the present approach to compute the current densities
on @, then we can use the integral representations to compute the fields in the coaxial line only
in the region enclosed by @. Differently stated, we are not able to compute the fields below depth
—d. In 1, we can compute the fields at any depth inside the line. Perhaps, this is the trade-off
between the two methods. We are confident that the present approach is correct and that it is the
preferred one computationally since what we are striving for is to get the fields correctly at the
opening, o, of the coaxial line.
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6. FAR FIELD

We will present two ways to compute the far field. First, we point out that we can express the
far field in terms of an integral over o (and an integral over S). The integral over o, however,
contains the magnetic current density on o, a quantity we have not computed above. We are thus
led to consider other representations of the far field. These representations will be for the
magnetic field. To obtain representations for the electric field, we recall the following.

In the far field, the magnetic field can be expressed in the form

—ikr

H (r)~° (D), r—o. (6.1)

r

From Maxwell’s equations

B (r) = iklyv <H (1) ~ {v[ : f(?)} < G(F)+ e:r )V % 0?(;7)}  row. 6.2)
But

v{e:kr f(?)} X G(F) ~ —ik e:r FRFxaF) +0(r?), roo (6.3)
and

Vxa(F)=0(rt), row. (6.4)
Hence

E'(r)~-Z e_:,. FAFxG(), r—ow (6.5)
or

E(r)=—ZixH (r), r—>o. (6.6)

We turn to the derivation of the far-field representations of the magnetic field. The first comes
from (2.3). We observe that

—ikr' eik?’~r

ger)~—————, oo (6.7)
Ay
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Vg(r,x') ~ —ikg(r,x)r', VVg(rr')~-k’g(r,r')i'7', r' — o (6.8)
and substitute in (2.3)

ikZH' (r") ~ —ZIMT (r)- [—kzg(r, r )+ k2 g(r, r')I] ds
+2kZZ;3’><{ j J (r)g(r,r')ds + j J, ()g(r,r')ds + j J_(r)g(r,r')ds + j J,(r)g(r,r’)ds}

—kzZJ-{JS (r)xr'g(r,r")+ [JS (r) x ;:i'g(r,ri')} }dS , r'—>oo. (6.9)

We observe that
M, (r) [-F7 +1] = =M, (r) -[#'x (7' xI) | =[#'x M (r)]- (7' xI) = =#'x[#'x M (r)]  (6.10)
and that
[Js(r)xfi'l :fc[(j/-Js(r))(—é-?')—(E-Js(r))(j/-f' )}
# 3 (2 3,00) (27 )= (59, 00) (27 ) |- 2| (G- 3, @) (57 ) - (5-3,0) (27 )|
= E| (37 ) (23, 00) = (27 ) (59, @) [+ 3] (27 ) (59, 00) = (%7 ) (295 @)]
; 2[(&-?’)(945 ) —(9 - ?')()E-JS (r))} =P x[3,()] - (6.11)

Substitution of the last two results in (6.9) gives
H (r')~ —iZkW’x{?’x J'Mr(r)g(r,r’)dS}

— 2k j J_(r)g(r,r')ds + j J, () g(r,r')ds + j J_(r)g(r,r)ds + j J_(ng(r, r')dS}

— ik x j {30 (r, ) =[I,(0)], gr,x)}dS, 7 > (6.12)

S
where g is given by (6.7).

A second representation of the far field can be obtained from (1.6.1) with I", replaced by T,
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j{E (1) [Vx VX, (r,r)]-[Vx V< E'(r) | -Fl(r,r')}dV

= {—E’ (r):[Ax VxT,(r,r)] +[ Ax V < E (r)]-rl(r,r')}ds , 1r'eD,. (6.13)

The region D, is the upper-half space, excluding the monopole structure and the reflection of

the region D about the xy-plane. We can think of it as representing the far-field region. Thus, the
contribution of the volume integral is zero while, for the surface integral, we have

J-{—Et (r)-[Ax V=T, (r,r")]+ [ﬁ xVxE' (r)] T, (r, r’)} ds
= —j{[ng' (r)]-Vxl"l(r,r')}dS
+| {[ﬁ xE'(r) |- VT (r,x') - ikZ| /i x B’ (r)]-rl(r,r')}ds

—ikZ j [AxH' () |-T,(r,r)dS - ikz j [AxH'(r)]|-T,(r,r)ds (6.14)

or
-[ {[szf (r)]-erl(r,r')}dS — [{M, (r)- VXL, (r,x) + ikZJ, (r) T (r,x')} dS

—ikZ j Js (t)-Ty(r,r)dS —ikZ j J, (0)-Ty(r,x)dS=0, r'eD,. (6.15)
S, Sp

We combine this with (1.2.12) to get
—ikZ [J 5 (r) - Ty (r,r')dS = [{M, (r) - VT, (r,r') + ikZJ (r) T, (r,r')} dS
S T

—ikZ j Js (r)-T,(r,r")dS — ikzj Js (r)-T,(r,r)dS =k*ZH’ (r'), r'eD, (6.16)
s, S,

or, in terms of the scalar Green’s function (see (1.2.2)

H (r') = —I{JS (r)xVg(r,r')+ [JS (r)x Vg(r, ri’)]l_ } ds

S

~ [{a, () xVg(r.r) +[ I, () x Vg (r.r)] }dS

i

Sy

{
- {Jsb (r)x Vg(r,r) +[ I, () ng(r,ri')l}dS
{

— [{3.00)x Ve(r,r) +[3,(r) x Ve(rr)] } dS
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1

_ﬁj{Mr(r)-V[Vg(r,r') +(Velr,), [+ K [M, (0)g(r,r) +(M, (1)), g(r.x) |} S,

T

r'eD,. (6.17)

We proceed to evaluate this expression in the far field using (6.8)

H (r') ~ =ik’ % [{3,(0)g () +[3, ()] g(r.x)} ds

—iki' [ {JSu ("gr.r)+[I; ()] g(r,rg}ds ~ik# x | {Jsb (ngr.r)+[J; ()] g(r,r,.')}ds

S, S,

— iki x IJT (r)[g(r,r") + g(r,x))]dS - ikYF x {f’ X IMT (r)[g(r,r)+ g(r,ri')]dS} , oo
(6.18)

where g is given by (6.7). To obtain this result, we used (6.10) and (6.11). We also used the fact

that, on 7z, the electric and magnetic current densities are transverse to the z-axis. As a
consequence

[JT]i :JT ! [Mr]i:MT ’ MT";;' :Mr";;' (619)
Finally,
V[Vg(r.r)] - V[—ikg(r,ri’)?i'} = —ikV[g(r )] ~ kg (e, e, F o0 (6.20)

The far field expression (6.18) differs substantially from the one in (6.12). It may even be
argued that (6.12) is simpler to compute. Equation (6.18) demonstrates, however, that, when it
comes to the far field, we have an image theory in place. We proceed to show this. Define a
current density J, on the image S, of S (about the xy-plane) as follows

zxJ . (r)=—zxJ.(r), res
5 () s(r) } (6.21)

zJg(r)=z-J5(r), reS

This statement is in agreement with how electric currents are imaged in the presnce of a perfectly
conducting half-space with normal along the z-axis. We make similar definitions on the images
of the rest of the surfaces in (6.18). For the magnetic current density, we define its image on r,

as follows

zxM, (r)=zxM_(r), rer. (6.22)
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We recall from (6.19) that the magnetic current density does not have a component along the z-
axis.

We examine the second term in the first integral in (6.18). By (6.7)

—ikr'

[3,(0)], g(r)dS == [[3,(r)] € " . (6.23)
Arr

Using (6.21) and the fact that

rer=rer (6.24)
we get that
e*l—k"' ik r;
[[3s®)], grr)ds == [ I (r,)e " ds,. (6.25)
< ! drr 5

This is an integral defined over the image of the surface S. It is worth writing the whole
expression (6.18) out

—ikr'

—e A S A
H (r')~ —ik Foxa I (r)e* T dS— T, (r)e" " ds.
(r) (Wj {j (@) J3,®) }
. - e_ikr’ ~1 ikir ik x;
_zk( i jr x{jJSa(r)e ds— [ 3, (r)e dSl}
S, (Sa),
. _eiik’ﬁ’ ~f ikir
—ik — | x JJS (r)e™ " dS - J
dxr Sy ' (S),

_e—ikr' . o »
—ik x| I ()e* " dS—|J (r)e* " ds.
s s

ik’ . ;.
—ikY[ ¢ jf’ x{;’ ><|: [M. e ds+[m, @r)e ds,]}, o0, (6.26)

drr

J(Sb )i (r) e ds, }

Thus, we have an expression for the far field in terms of integrals over the surfaces S, S,, S,, 7
and their images about the xy-plane. We note that there is no integral over o.
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CHAPTER 3
MONOPOLE AS AN EXTENSION OF THE CENTER CONDUCTOR
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1. INTRODUCTION

In this chapter, we use results from Chapters 1 and 2 to develop a system of integral equations
for geometries as in Figures 1.1 and 1.2. In these figures, the monopole is an extension of the
center conductor of the coaxial transmission line. The diameter of the monopole in Figure 1.2 is
not restricted in any way. It can be smaller than that of the center conductor or even greater than
that of the outer conductor. Also, the height / of the monopole above ground is variable and it is
allowed to become zero. Figure 1.1 is a special case of Figure 1.2. We proceed to derive integral
equations for the geometry of Figure 1.2. Equation numbers from Chapters | and Il are preceded
by Roman numerals I and I, respectively.

________________ z=0

\/

b

Figure 1.1. Monopole as extension of center conductor of coaxial line
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S S
I b
IR I 2R I T z=0
D D
> 1 < > 1 <
S, Sa 5 S
—————————————————— z=-d
7 7
—>
a
b 7

Figure 1.2. A more general monopole geometry

For i >0, we denote the surface of the structure in the upper-half space (z >0) by S. If =0
, then we consider the part that lies on the xy-plane as part of the inner conductor S,. We first

consider the case /4 >0.
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2. CENTER CONDUCTOR EXTENDING ABOVE THE PLANE (4 >0)

The unknowns are given in (1.4.6)-(1.4.9). The currents J, and J; must be equal on the xy-
plane. The integral equations are given by (1.5.2), (1.5.6), (1.7.1), and (1.7.2).

If the coaxial line is to be terminated, as in Figure 2, then we have two additional unknowns
and they are given by (11.2.1). The integral equations are given by (11.3.1), (11.3.2), and (I1.4.1)
through (11.4.4).
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3. CENTER CONDUCTOR EXTENDING TO THE PLANE (/2 =0)

The unknowns and integral equations are as in the previous section.
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4. REMARKS

We must make sure that at the point r' = (a,¢’,0), integral equations (1.5.2) and (I.7.1) give

the same answer. These equations are

—Zﬁ'x{ [3,00)xVg(r,r')dS + [ J,(r) x Ve(r,r)dS + [ 3, (r) x Vg(r,r')dS}

—ﬁ'xJ{JS(r)ng(r,r')+[J5(r)><Vg(r,r,.’)]i}dS=;Js(r') , r'eS.

and

—n'x _[ {Ja (r)xVg(r,r)=[J,(r)x Vg(r,r)] } ds

SH

—n'x '[{Jb (r)xVg(r,r)—[J,(r)x Vg(r,rl.')]l_}dS

Sp

a

_2ﬁ’xIJG(r)ng(r,r’)dS =;Ja (r), r'es,.

If r' =(a,¢’,0), these equations become

—2,5'><{ [3,00)xVg(r,r)ds + [ 3,(r) < Vg(r,r')dS + j J_(r) ng(r,r')dS}

- p'x HJS (r)xVg(r,r') +[Js(r) x Vg(r,r')]i}dS = ;JS (r'), r'=(a,9'0)

N

and

—p'x j {3,(0)xVg(r,r)=[3,(r)x Vg(r,r")] } dS
—p'x j {3,00)xVe(r,r) [, (r)x Vg(r,r)] | dS

Sy

—Zﬁ'ijg(r) xVg(r,r')dS = ;Ja(r') , r'=(a,0',0).

The p'-component of both equations is zero. From (4.3)

(4.1)

(4.2)

(4.3)

(4.4)

;@'-JS (r')= 22-{'[ J, (r)xVg(r,r)dsS + IJb (r)xVg(r,r)ds + .[J“ (r) ng(r,r')dS} (4.5)
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while from (4.4)

;gﬁ’-Ja (r') =2z j J_(r)xVg(r,r')ds + 22-{] J (r)xVg(r,r')ds + j J,(r) ng(r,r')dS}.

(4.6)

From these two
I (r')=¢"-J, ("), r'=(a,9'0). 4.7)
For the z-component, we get from (4.3) that

;2 J(r')=-2¢" .[JS (r)xVg(r,r')dS
S

25" { [3,00)xVg(r,r)ds + [ J,(r)x Vg(r,r)dS + [ I, (r) x Vg(r, r')dS} (4.8)

while from (4.4)

;E-Ja (r')= —2(/3'-IJU (r)xVg(r,r')dS = —2J.JU (r)-[¢'xV'g(r,x")]dS
oy o 02Er) s ce)] o
= Z-IJU(r){ PR }zs 0. (4.9)

With this last result, we can write for (4.8)

z-Jg(r')=—49" {I J,(r)xVg(r,r)ds + IJ,, (r)xVg(r,r")dS + .[JS (r) x Vg(r,r')dS} :

5, s
(4.10)
From (1.8.4)
P (r') = —(ﬁ'{ [3,00)xVg(r,r)ds + [ J,(r)x Vg (r,r')ds + [ I (r)x Vg(r,r’)dS} ,
) ) r' = (a,(;',O). (4.11)
From the last two
z-Js(r')=4p"-3,(r"), r'=(a,9',0). (4.12)
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But p'-J_(r') is the normal component of an electric current density on a perfect conductor
and, hence, it must be zero. We conclude then that

z-Js(r')=0, r'=(a,9',0). (4.13)
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PART 2
INTEGRAL EQUATIONS FOR THE FIELDS OF A COAXIAL LINE RADIATING
INTO A HALF-SPACE

ABSTRACT

This is the second Part in a report on the formulation of the problem of radiation of a coaxial
line into a half-space in terms of BIEs. In it, we use the results of Part 1 to derive BIEs for the
fields of a coaxial line radiating into an otherwise empty half-space. The relationship of
wavelength to the radii of the line is such that the input wave is a TEM wave. We take advantage
of the circular symmetry of the line to reduce the vector integral equations to three scalar
equations. The unknown electric current densities on the walls of the line are expressed as
infinite series in the natural modes of the line, the coefficients of the modes being the unknowns.
We point out that any of the three integral equations can be solved numerically using the method
of weighted residuals. This method results in an infinite system of linear equations with an
infinite number of unknowns. The actual solution of a truncated version of such a system will be
given in Part 3 of this report. We conclude by deriving expressions for the far fields in the half-
space in which the coaxial line radiates.
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1. INTRODUCTION

We use here the integral equations developed in Part 1 to determine the fields of the structure
in Figure 1.1: a coaxial transmission line, terminating in a ground plane and radiating over the
upper-half space. All surfaces are perfectly conducting. The ground plane is infinite and the
coaxial line extends to infinity in the lower-half space. The inner and outer radii of the
transmission line are a and b, respectively. We assume that the line supports only a TEM wave.
For this, it is sufficient that (references 1 and 2)

ka+b

<1 (1.1)

where £ is the wavenumber of the time-harmonic (e**") electromagnetic wave in the line.

z

o o

z=0

D D
S > n ]S, Sa—>7A14— S

r T — z=-d

—>
a

v

b

Figure 1.1. The semi-infinite coaxial line of inner radius a and outer radius 4 is fed at
z=—.At z=0, it opens up into a half-space, its outer conductor becoming a
plane that extends to infinity. All surfaces are perfectly conducting.

The excitation of the line occurs at z = —o and results in a TEM wave with fields

Ve | YWwe'
SR b, W)=
b b
In| —|p In o,
a a

where V' is the voltage of the inner conductor with respect to the outer, and Y is the free-space
admittance. We use cylindrical coordinates ( o, ¢, z). Since the line is not infinite, we have also

an induced wave in the line with fields { E', H' }. The total fields { E',H'} in the coaxial line are
the sum of the generator and induced fields

Ef(r) = (1.2)

E'=E‘+E', H =H*+H'. (1.3)
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In the upper-half space we have radiated fields { E",H" }. We proceed to determine both sets of
fields by first deriving integral equations and then solving them numerically.
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2. FIELDS INDUCED BY COAXIAL LINE
Since the generator fields are independent of the angular coordinate, and since the geometry

has circular symmetry, we expect the induced fields to be independent of ¢. Thus, according to
Appendix A, we can have a TEM wave traveling down the line, given by

e o we'
P H(l’)=— Q
b b
In| —|p In| = |p
a a

In addition, we can have the zeroth-order mode of a TM wave, given by (A3.23), (A3.24), and
(A3.27) in Appendix A

E'(r) = (2.1)

™ Eg;e (p’ (0, Z) = VOnz eMO"Z POn (p) (2'2)
MEL (pop.2) =ik, €77 Py (p) (2.3)
™MHS (p,p,z) =ikY €™ P, (p) (2.4)

with v,, aroot of the equation
Jo (v0,a) Yy (vo,0) = Jo (vo,0) Y5 (v,a) =0, n=12,... (2.9)
and

kz _‘/On2 ! kz > V0n2
Aon = (2.6)

. 2 2 2 2
—i\V,, —k", v, >k

while

JO (V()n a)

Y, (vy.) Y (vo,P) - (2.7)

Py, (p)=Jo(vo,p) -

Similarly, we can have the zeroth-order mode of the TE wave (see Appendix A)

" Hg);e (Io’ ¢)7 Z) = ll’lOn2 eiKOﬂZ ROn (p) (28)
EHE (p,9,2) = ik, € R, (p) (2.9)
" ES (0., 2) =ikZ €7 Ry, (p) (2.10)
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with g, aroot of the equation

Jy (1, @)Y, (12g,b) — Jy (1, B)Y, (11,a) =0, n=12,.. (2.11)

and

JEE =t ks
KO _ ﬂOn /Ll()n (212)

' _i\/ﬂOnZ _k2 ! ﬂOnz > k2

while

Roy(0) = o (tt )~ 220Dy (1 ). (2.13)
Y, (IUOna)

The first few roots of (2.5) and (2.11) are given in (reference 3) for selected values of y =b/a.

Also, Mathematica® (reference 4) has special subroutines that compute the roots of these
equations.

From the above, we can write that the magnetic field induced in the coaxial line is
YVe+ikZ "
o
In| —|p
a

+ VZ {BnlkY eMﬂ“Z POn’ (p)(’o\ + Cn eiKO”Z |:iK0nROi1, (p)b + ll'lOanOn (p)2:|} (214)

n=1

H'(r)=-4

where 4, B, and C, are unknown constants. The constant 4 is dimensionless, B, has dimension
of length, and C, has dimension of length-mhos.
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3. INTEGRAL EQUATIONS AND ELECTRIC CURRENT DENSITIES

From (5.6), (7.1), and (7.2) of Chapter 1 of Part 1, the integral equations for the present
problem are

Zx { j J (r)xVg(r,r')ds + j J, (r) Vg(r,r')dS} =J_(r),r'ec (3.1)

and

—n'x J. {Ja (r)xVg(r,r)-[J,(r)xVg(r,r)] } ds

S(I

—n'x I {Jh (r)xVg(r,r')—[J,(r)xVg(r, rl.')]i } ds
1

_Zﬁ'xIJU (r)xVg(r,r')dS = 2{

J (), r'es,

J,(r"), r'esS,’ 32

The current densities in these equations are defined in (4.6), (4.7), and (4.8) of Chapter 1 of Part
1.

J (r)=nxH'(r),res,, J,(r)=nxH'(r),res,, J (r)=-2zxH'(r),reo (3.3)

where H' is defined in (1.3).

In terms of the fields in (1.2) and (2.14), we have

w.o . & ' " ' "
In(Jp =
a
while
3= (e"""z—Ae+""z)A+Vi B,iky €% P, ()2 - C, € y1, R, (a)@ 35
a - b z nl On a)Z ne ILlOn On (a)¢ ( . )
In(]a n=l
a
and
3@ == (e A ) VY B kY € P ()2 C, € R, (0] (36)
b - b n On n luOn On ¢ *
In(]b =1
a
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But from (2.7)

POn' (a) = v, {Jo' (vo,a) - ;0 ((:OHZ)) Yo' (VOna)j|
Yon ' - a)Y, a)|=- 72
= L T 0, @ ) [ = @)

where, above, we made use of the Wronskian relationship for Bessel functions (reference 3).
Similarly, from (2.13)

1 ! ! 2
Roy (@) = | e, @)% () =y ()Yt ) | =2 (3.8)
Y;) (IUOna) ”lLlOna)/O (IUOna)
With these two results, we can write for (3.5)
, N a > | kYB ., . . o
1w= (e —ae™)z 7 {Zk v gz FonCa g (o} (3.9)
aln(z) a3 Yy (v,,a) Y, (440,)

where y =b/a.

From (3.15) and (4.10) of (reference 1), we can write (2.7) and (2.13) in the form

J (v, b NI
Po(0) =T vor )~ 2 y (0 0) Roy(0) = T (tonp) -2 H Py ) (310)
)/O(VOnb) )/0 (lLlOnb)
Proceeding as above, we find that
/ 2 2
P H)=-———————, R )=——"——— 3.11
o ( ) ﬂ-bYO (VOnb) On( ) ”luOnbYl(IUOnb) ( )
and
) LN > kYB A ; ~
J,(r)=- U (e*”‘Z—Ae“"Z )z+2—V {Zk n_ it 5 HonSn 0.Cs g’ (o}. (3.12)
In(l)b 7b = | Yy (vy,b) Y, (4,b)

In the next section, we substitute the current densities in the integral equations and resolve the
latter into their components.
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4. SCALAR FORM OF INTEGRAL EQUATIONS

We substitute next expressions (3.4), (3.9), and (3.12) for the electric current densities in the
integral equations (3.1) and (3.2). First, we write

J.t)=u,(r)p+v,(r)p, J (x)=v,(r)p+h,(x)z, I, (r)=v,(r)p+h,(r)z (4.1)
where
u, () == (Y; = ikYVnZ:: B.P, (p), v.(r)= —ng Cxy R, (p) 4.2)

b= 23 HoCo gy ry= TV (e~ Ae™) - 2V S B g g
wa n=1 Yl(/’lOna) aln(l) wa ) Yo(Vo,,a)

v, (r) = —Z;%eiw, h,(r) =— bIIr:I(/;() (e’”‘z— Ae*”‘z)+ Zif:;V g%(inb) glhon®
(4.4)
Compute
Zx[J,(r)xVg(r,r)]=J,(r) &gg;r') ~Vg(r,r)z-J_(r)
[ )+, 0210 gtz [, (06 + 4, (0)2]
=, @70 5 ()9 g ) #5)

where the subscript ¢ stands for “transverse to the z-axis”. A similar expression exists for the
outer conductor. Substitute in (3.1)

| |:va ) 28T 5 (v, g(r,r')}dS + [vb 1) 28 5 (r)V,g(r,r')}dS
5, oz 5 oz

=u (r"p' +v, (r)9 ,vr' eo. (4.6)
This is the first integral equation in terms of scalar functions.

Compute

3, (0)x Vg (r,r)=[J, (r)x Ve (r,r)],
= [v, (1)@ + b, ()] x Vg (r,r) [ (v, (1)§ + , (1)) x Ve (r,r)) |
=, (1) {px Ve (r,r) =[x Ve(r,r)] | +h,()ZxV (g(r,r) - g(r 1))
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- { Oelrr)_ o) Oe(rr) _ dgle )}+ (e ()~ 2]

iz p oz p

—v (r){ é’gDﬁ(; Lo agNég’r')}rha (r)2x Vg, (r.r') 4.7)
where

gy(rr)=glrr)-glrr), g,@r)=grr)+g(r) (4.8)

the Dirichlet and Neumann Green’s functions for the z =0 plane. Equation (4.7) is also valid
when the subscript a is replaced by b. We also compute

3, (X)xVg(r,r') =[u, (r)p+v,(r)p]x Vg(r,r')

A . dg(r,r') 10g(,r) dg(r,r’)
=[pv, (r) - gu, (r)]iaz { (r ) o0 v, (r) o } (4.9)

Substitute these expressions in the first of (3.2) (r'e S, ,n'=p')

A . Ogy(rr) gy (rr) ]
_ X r _
p f{va( P

+h,(1)2x Vg, (r,r')}ds

s, L J

—ﬁ'xj{vb(r) 5280 _; 08, ()

+h (r)zxVe, (r,r)+dS
5y o L (1)zx Vg, ( )}

St

—Zﬁ’XJ{[ﬁvU(r)—¢u (r)]ﬁg(r LU { (r)— L ﬁggor) v, (r) é)gg;r')}}dS

:;[va(r')(ﬁ’+ha(r’)2], res,. (4.10)
Since
P =C0Spx+singy, @=-Ssinpx+cosey (4.11)

we can perform the vector operations in (4.10) to get, for the ¢'-component,

J‘v()ﬂgzvforr) J' (r)é’gN(l‘r)
+2j{ (r)wg(”) (r)&g;;‘"')}dk;va(r'), ves, (4.12)
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and for the z-component

- { sino-¢) 2 1, @05 vg, (nr')}ds

-] {w(r)sin(co—co’)ﬁglgr'”w (1) Ve, (1 }
~2[[sin(p ¢}, (1) —cos(p— @, (] £ s = (1), r'es,

Similar expression is obtained from the second of (3.2) (r'e S, , n'=—p")

Iva(r)ﬁgN(;r) Ivb()ﬁg’v(”)
—2_[|: 1é’gg,r)_va(r)é’gg,r)}dS:;Vb(rf)' r'es,
7%

and

J { (r)sin(p — ') gD(r )+ha<r)f)'-VgD(r,r')}ds

+f { (r)sin(co—co')agi);r’m h(05' Ve, (r,r')}ds

+2|[sin(p - ), () - cos(p — p")u, ()

We return to (4.6) and we write it in terms of its components

- [ 0788 sino - g1) + 1, (1) vtg(r,r')}ds

Sﬂ

J[ (r) g( )Sin((p—go')+hb(r)[)"V,g(r,r')}dS=ua(r') r'eo

Sp

and
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| [ 0750 cos(p— ) -1, @ vtg(r,r')}ds
+ j {vb (r)ﬁggﬂcos(w - —h,(r)p"- Vtg(r,r')}dS =v (r'),reo. (4.17)

The system of integral equations is given by (4.12) through (4.17).
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5. SIMPLIFICATION OF SCALAR INTEGRAL EQUATIONS

We recall the definition of the scalar Green’s function

—ikR

g(rr)=- Aok R= \r —r'\ = [pz —~2pp'cos(p—@)+ p’* +(z - z’)z]i. (5.1)
We observe that
J-r/>'+2ﬂ é’g(r,lr ) dp= _J-w’+2ﬂ adg(r,r’) dp=0. (5.2)
3 Op ¢ 120}

Since the various current density functions are independent of ¢, the second term in the two
integrals in (4.17) is zero; thus, we can write

[v. (r)agémcos(go—go')ds + [, (r)ﬁg;mcos(qo—go')dS v (r),r'eco. (5.3)

SU

This statement makes good physical sense because it says that the angular linear current density
on o depends only on the angular linear current densities on the walls of the coaxial line and not
on the z-directed ones.

We encounter the same kind of term in (4.12), and we rewrite that expression as
_Jva(r)é)gN(r’r)dS_ J.vb(r)é)gA’(mdS—Zjva(r)éD‘g(l.J)dS _ Eva(r') , r'es..
5, ap 5 ap ’ ap 2

(5.4)

A similar expression results from (4.14)

v, ) 28 ) oy v ) 28 ) g, 2,50 g5 Ly ey ves,. 65)
5, ap p 5 p 2

Sy

From (5.1), we see that the scalar Green’s function in cylindrical coordinates is an even
function of ¢ —¢' about zero. Thus, its Fourier series contains only cosine terms; in fact

(reference 3, p. 487)

—‘z—z"m ada

N

o(r,r) = —417[28 cosi(p— )| J,(@p)J, (ap)e (5.6)

where ¢, is the Neumann symbol
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& =1, ¢=2, [=12,. (5.7)

Because of this, the terms in (4.16) containing the sine function dropout and we get

jh()é’g(;r)ds jh(r)ﬁg(;r)ds u (K, r'eo. (5.8)

l

Again, this statement makes good physical sense because it says that the radial component of the
linear current density on o depends only on the z-component of the linear current density on the
walls of the coaxial line. We can visualize the current coming up in the inner conductor,
displacing itself radially at the termination of the line, and returning via the outer conductor.
Similarly, from (4.13) we write

[ 1,0 7225 g i [ 1, 1y 2 0ED g
Sa ap S

ap
+2 j u_(r)cos(p — go')&ggZ'r,)dS _ ;h (), res, (5.9)
and from (4.15)
jh r )5gn(r r)dS J‘h r )0"gp(r r)
—2£ug (r)cos(go—go’)é"gg;r’)dS:;hh(r') r'es,. (5.10)

From definitions (4.2), (4.3), and (4.4), we see that the last three equations involve both
unknown and known quantities. By contrast, (5.3), (5.4), and (5.5) involve only unknown
quantities, i.e., there is no generator that excites these circumferential currents. Indeed, a quick
examination of the geometry of our problem and the way we excite the coaxial line reveal that
there is no reason for these currents to exist; therefore, in (4.2). (4.3), and (4.4), we setall C, =0

. From (2.14), and the discussion in Section 2, we conclude that the arrangement we have
supports a TEM and a TM wave, but it does not support a TE wave.
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6. SOLUTION OF THE SYSTEM OF INTEGRAL EQUATIONS

The system of integral equations consists of (5.8), (5.9), and (5.10). The three scalar functions
that appear in them are defined in (4.2), (4.3), and (4.4) and involve an infinite number of
unknowns. We can use the method of weighted residuals (reference 6) to convert each equation
into an infinite system of linear algebraic equations. Thus, we will have three separate systems of
equations, each involving the same unknowns. If we truncate the three systems into finite
systems of N +1 equations in N +1 unknowns, then, as N tends to infinity, the solution for each
system must converge to the same value; thus, we only need to numerically solve one of the
three integral equations. We chose to deal with (5.8). We will do this in Part 3 of this report. In
the next section, we derive far-field expressions.
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7. FAR-FIELD REPRESENTATIONS

We derive a far-field expression for the geometry of this section. From Green’s second
identity (reference 7, p. 509), we have that in the upper-half space

[ (B @) [Vx VT, (r,0)] [ VXV H (1) |- T, (r,r) | dV
= | {H (1) [Ax VXL, (r,r)]-[AxVxH (r)]-T, (r,r')} ds (7.1)

z=0

where H" denotes the radiated magnetic field (total magnetic field in upper-half space) and T,
is the second-kind Green’s dyadic. The latter satisfies the differential equation

VxVxT,(r,r' )=k, (r,r') =ikV x[5(r,r)I-5(r, )] (7.2)
where I is the identity dyadic and I, its image about the z =0, and the boundary condition

zxVxT,(rr')=0, z=0. (7.3)
Following standard procedures, we can show that

| {H (1) [Vx VT, )] -[VxVxH ()] -T, (r,r')}dV

iikV'xH’(r’) =—k’YE (r'), z'>0. (7.4)
Also,

| {H (r)-[Ax VT, (r,r)] - ikY [ A= E (r) |- T, (r,r')}ds

z=0

= —ikYH[E xE'(r) |- T, (r, r’)} ds = ikY [M,,(r) T, (r,r')ds. (7.5)

From the last two equations, we have that

E () = lijMU ()T, (r,r)dS, z'>0. (7.6)

The dyadic in this expression is given by

L, (r,r')=—ikVx[g(r,r)I-g(rr)L] (7.7)
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Where

—ik|r—r

gr,r’)=- : (7.8)

drlr—r'

With this, we have that

(M, (r)xVg(r,r)=[M, (r)x Vg(r,r)]-L}

=M, (1)xV,g(r,r) ~[M, ()< V g(r,r)] -1 +Ma(r)x2%m+[Ma(r)x2&gém}'l,

z=0
i

— M. (r)xV, g(r, ') + 2M._ () x Eﬁgg’r) _2M_(r) x Ve(r,r')
4

-0 (7.9)

which we substitute in (7.6) to get

E(r)=2 j M_(r)xVg(r,r)dS, z'>0. (7.10)

Similarly, from (2.13) of Chapter 1 of Part 1, we have

H (r')= kZZ [M_(r)-VVg(r,r')dS —i2kY [M_ (r)g(r,x)dS , z'>0. (7.11)
l
This equation can also be obtained by applying one of Maxwell’s equations (Ampére’s law) to
(7.10).

In the far field (' — )

—ik(r'-r-7") —ik(r'-r-7') —ik(r'-r-7')

g(r,r)~- € , Vg(r,r')~ik ¢ 7, VVg(r,r)~k° 97',:',:' : (7.12)
4rr’ 4rr' Ay

Using this in the previous two equations, we get

. —ikr'
ike™ .,

E'(r)=-" " Fx[M,(e""dS, - (7.13)
2rr ’
and
. —ikr’
H (r')=- ikYe ' {f’ X .[M“ (r)e*” dS} , ' —> 0. (7.14)
2y :

These are the far-field representations.
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We will attempt to compute the integral in these expressions. From (1.2) and (2.14)
M, (r)=M,(p,9,0)=2xE (p,0.,0)=ZxE'(p,,0)

1+ 4 - ' ~
=V —1 E B A, P,
|:|n(;()p —~ nﬂﬂn On (p)j|¢

We substitute in the integral

I= IM (r)e* " ds = VJ pdp{ —zZBﬂO P, (p)][ dope™™

In(x)
For the second integral, we write
I = _[02” dppe™™™ = _[02” (=xsin @ + y cos ) g* " rese=e) g
= fz;w [=Fsin(y +¢") + pcos(y + @) [e" " dy
= ‘f"f:fwsm p eI dy 4 ﬂiﬂw cosy eV dy = 3'i27J, (ksin &)
and substitute in (7.16)

1+ 4
In(x) o

j J, (ksin gp)dp—zanzOnj J,(ksing'p) P, (p)pdp}

= é’iZHVLle (ksin 19'/3){ —iZBMo,,Pon' (p)}pdp

1+ 4

=@'i ZEV{

For the first of the last two integrals, we write

1 J-kbsinS _ Jo(kasin 9") - J, (kbsin 3')

b
L=\ Jy(ksinp)dp=— du =
! L i p)dp ksing’ Jo @) ksin ¢’

kasin &'

while for the second

JO (VOna)
¥, (vo,4)

=- [Voud2 (Vo, p) 1 (kSin 9'p) —ksin 3 J, (v,, p)J, (ksmS,o)]

b . , 4 b H '
12 = -[a Jl(kSIn l9p)POn (p)pdp = _VO” J.a Jl(kSIn lgp)|:‘]l(vonp) )

J (VOna) VOnp
Y(vOna) v,,. —k?sin? g’

H ' H ' b
[VOnYZ(VOizp)Jl(kSIn "gp) _le(VOnp)JZ (k8|n l9p)j|a
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2

Vou P Jo (v, @) VN
= n J, (v, 0) — Y, (v,, ) |/, (ksin9'p)
VonZ _k2 S|n2 I9I|: 2( 0 p) Y()(Vona) 2( 0 p)j| l( a
v, ksin$'p Jo (v4,@) . b
. J (v, -———Y (v J,(ksin$
V0n2 _k2sin? 19{ 1 (V6,0) Y, (v, ) 1(VouP) |/ ( 0) p
2v, J,(v,,a) . b
=- = S Vo, 0) =Y (v, p) |y (ksin &p)
v(,nz—kzsmz&’[ P Y,(vy,a) T ° . a
vy, ksind'p Jo (vy,a) b
. J, (v, - LY (v, J,(ksin g
Vonz _kZ S|n19’2 |: 1( 0’1p) YO(VOna) l( Onp) 2( p) a
in%p [ 2 in%' ) b
S PACHE IR SO {W—Jz(ksmgp)}
Vv, —k°sin® 9| Y, (v,,a) ksin9'p a
vo,ksindp | Jy (v,,a) NN
s - J (v, P) — Y, (vy, 0) |, (ksin &p)
v, P —k?sin? 9| "o Y,(vo,a) T ° ° a
v, kbsing’ [ J, (v, a) .
= O J,(v,,b) — Y, (vy,0) |J, (kbsing’)
VOn2 - k2 Sin2 19’ L e YO (VOna) e °
Vo, kasin g J,(v,,a —JO(VO”a)Y vy, @) |J, (kasin ")
2 2 =2 Ay 1\ 0n 1\"0n 0
VOn _k sin 19 YO(VOna)
V,,kbsin 9’ Jo (Vo,D) .
= O J, Vo, 0) ———"=Y, (v,,b) | J, (kbsin &)
VOnz—kzsinzg’[ R AT B N
Vo, kasin g J,(v,,a —7J°(V°”a)Y vy,@) |J, (kasin g’
vo 2o k?sin2 | Y(vga) O ]°
on 0\¥on
3 2ksin 9’ Jo (kbsin ") 2ksin 9’ Jo (kasin @)
ﬂ-(VOnz _kz Slnz l9') YO(VOWb) ﬂ(v()nz _k2 S|n2 L9,) }/()(VOna)
2ksin g’ Jo(kasin &) J, (kbsin J')

(7.20)

| |

We substitute the last two equations in (7.18) and use (2.6)

- x(v,,” —k*sin? 9) | Y, (v,,a) Y, (v,,b)

. 1+ A Jy(kasin§") —J,(kbsin ")
=@'i2nV -
In(y) ksin g’
—zZB % 2ksin g’ Jo(kasin ') J, (kbsin &)
n=1 _k2 SIn ‘9) YO(VOna) YO(VOnb)
_ plioav 1+ 4 Jo(kasmS).—JO(kbsinS')
In(y) ksing’
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4 n=l V0n2 - k2 S|n2 ‘9’ YE) (VOna) )70 (VOnb)

L 2ksing' < N {Jo(kasing’)_Jo(kbsinS')}

From this and (7.13)

~ —ikr H _ H
E’(r)=—9e i 1+ 4 Jo(kasmg)_ J, (kbsin 9)
r In(y) ksin g
, 2ksing iB Wi =k [ Jy(kasin9) J,(kbsin 9) o
r T v -ksin? 8l L(pa)  %L,0) ||

while from (7.14)

e Wi 1+ A4 J,(kasin @) — J,(kbsin 9)
In(y) ksin g

- 0 _k2 - .
+2k5|n923n 21/0,1 - Jo(ka3|n9)_Jo(ka|n9) D
T n=1 VOn _k sin ‘9 YO(VOna) )70 (VOnb)

(7.21)

(7.22)

(7.23)

where, in these two expressions, we changed from primed to unprimed coordinates. These are
the far-field representations of the electric and the magnetic field in terms of the unknown

coefficients of the current density expansions.
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8. CONCLUSIONS

For a coaxial line, as shown in Figure 1.1, we derived three BIEs. We also wrote the unknown
current densities as expansions in the modes of the coaxial line. We concluded in Section 6 that
we need deal with only one of the integral equations to numerically determine the coefficients of
these expansions. This will be explicitly done in the parts that follow. In Section 7, we present
the expansions of the far fields.
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APPENDIX: THE ELECTROMAGNETIC FIELDS OF A COAXIAL TRANSMISSION LINE
Al. INTRODUCTION

In this note, we develop the eigenvalues and eigenfunctions for an infinite coaxial line. The
inner and outer walls of the line are perfectly conducting, with radii a and b, respectively (see
Figure Al). The axis of the line is the z-axis. Derivations can be found in many books. We have

consulted Jones (reference 8), Stratton (reference 9), and Tai (reference 10). The time
dependence of the electromagnetic fields is +iar. Thus, Maxwell’s equations are

VxE=—ikZH, VxH=ikYE, k=wJue, Z=Y"=Jule (AL1.1)

where x and ¢ are the constitutive parameters of the space between the two conductors. On C,
and Cp, the tangential component of the electric field is zero

AxE=0. (A1.2)

Figure Al. Cross section of coaxial transmission line. C, and C represent the inner and outer
circles. The region between the two conductors is denoted by D.

A2. GENERATION OF WAVES IN THE COAXIAL LINE
It is well known (reference 9) that, in a source-free region, electromagnetic fields can be
expressed in terms of two scalar functions. These functions are components of Hertz vectors of

arbitrary direction. In this case, we take the direction to be that of the z-axis and write

II(r)=711(r)z, M(r)=M(r)z (A2.1)
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where
VPI()+k*II(r)=0, V’M(@)+k*M(r)=0. (A2.2)
The fields generated by these Hertzian potentials are (reference 9)

E(r) =VxVX[II(r)z]-ikZV x[M (r)z], H(r)=VxVx[M(r)z]+ikYV x[11(r)z]. (A2.3)

A3. TRANSVERSE MAGNETIC WAVES

If in (A2.1) we let M (r)=0, we find that the magnetic field does not have a component
along the z-axis. The z-component of the electric field is given by

O I1(r)

2
z

™ B (p) = 2.V xV x[IT(r)2] = + K2 (r). (A3.1)

From (A1.2), we have that ™ E* must be equal to zero when p=a or p=»b. For this, it is
sufficient that
I(a,p,z)=11(b,p,z)=0. (A3.2)

For, if this is the case, it follows from the Hugoniot-Hadamard theorem (reference 11) that the
second derivative with respect to z is also zero there. Thus, from (A2.2) and (A3.2), we have the
boundary-value problem

ViII(r)+k*II(r)=0, I1(a,@,z)=1I(b,¢,z)=0. (A3.3)
We use cylindrical coordinates (p, ¢, z) and write
(p.p.z) = f(p.@)h(z). (A3.4)

Substitution in (A3.3) gives

Vo) WD) e (A35)
flpo) k()

where V, is the transverse component of the Laplacian and v* is a constant that will be

determined from the boundary condition. Expressing the Laplacian in cylindrical coordinates, we
have

a( M]+M+V2p2f(p,(p):0_ (A3.6)

P ap P ap op*
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Writing,
f(p.p) = P(p)P(p) (A3.7)
we obtain
d ( dP(p)j
dp dp 2 2 :_@”((P): 2 A3.8
) T T g " (A38)

where the constant m is an integer since the solution in the angular direction has period 2. The
function @is then of the form

_ [cosme _
@ (p)={ ., m=012,... (A3.9)
n’ sinme

The remaining equation in (A3.8) is Bessel’s equation

d ( _dP(p)
dp dp

J+(v2p2—m2)P(p):0 (A3.10)
and its solution is the linear combination of a Bessel and a Neumann function

P (p)=a,, (v, p)+bY (v,p). (A3.11)
These are the functions that also must satisfy the boundary conditions

P,(a)="P,(b)=0. (A3.12)

This results in the homogeneous system of equations

a,J, (v,a)+bY (v,a)=0

" (A3.13)
a,J, (v,b)+b Y (v,b)=0
which has non-trivial solutions only if its determinant is zero
Jm (Vma)Y:n (Vmb) - Jm (Vmb) Ym (Vma) = O - (A3'14)

This is a transcendental equation with roots v, , n=1,2,... . For these roots, the solutions of the
system are
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o - JI‘H (Vﬂii'la) amn —— Jm (anb) am” . (A3.15)
Y, (v,,a) v, (v,,b)

mn

For (A3.11) we can then write

Pu(p) =0, 0P~ 1, (1, p) (A3.16
o (V@)
and for (A3.7)
I pp)=P,,(P)P .(0). (A3.17)

o o

These functions are orthogonal, in the sense that

Ifmne (p.9)f (p.p)dS=4,,05,, Ifm (p.9)f ,(p.p)dS=0. (A3.18)
D o 0 D 0 e

They can also be orthonormalized.

Returning to (A3.5), we write

h"(z)+ (k> —v, Yh(z) =0 (A3.19)
which has solutions

h,, (z) = & (A3.20)

where

kz _an2 ! k2 > an2
A= (A3.21)

B v 2ok, v, P> kP
For the upper root, the solution with the plus sign represents a wave traveling along the negative
z-axis while the one with the minus sign represents one that travels along the positive z-axis. For
the lower, we have exponential decay along these directions. From (A3.4), (A3.17), and (A3.20),
we can write,

" (p.g,2) =™ P, (p) ,(p). (A3.22)

o
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These are the eigenfunctions that comprise the z-component of the electric Hertz potential.
From this we can construct the electromagnetic field according to (A2.3). Thus, the
eigenfunctions for the z-component of the electric field are

ME=, (pp,2) =, € P, (0)® ,(p) (A3.23)

mn
mn
o o

while those for the p- and ¢ —components

é’znie(p’wiz)

ME” (p.g,2) = ’ = %i4,, e P, (D)@ .(p) (A3.24)
mn é’pé’Z n

o o

and

A ,
—+! p e P, (02 (9). (A3.25)

o

é’znie(p’w,z)

™ E(pi 0,2) = o
mnz (p ¢ ) pé’q)é’z

We note that the @—component automatically satisfies the boundary conditions. For the
magnetic field

kY A (09:2) 194
™ Hpie (IO,(D,Z) _ 4 0 _ 1 eiilm,,z Pm,, (p)m e’ (w) (A326)
mn_ P 0’7¢ P "
and
arT* ,(p,¢,z)
TM H(pie (pa 0, Z) = lkYOOﬂ— = ikY eimmnz Pmn’ (p)@ e (w) : (A327)
mn_ P "o

Again, we see that (A3.26) satisfies the boundary condition that the component of the magnetic
field normal to the perfectly conducting surfaces must be zero there. This condition follows from
(Al.2).

A4. TRANSVERSE ELECTRIC WAVES

If in (A2.1) we let 77(r) =0, we find that the electric field does not have a component along
the z-axis. The ¢-component of the electric field is given by
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" o (r) = ikz ST (A4.1)
ap

For (Al.2) to be satisfied, it is sufficient that the normal derivative of the magnetic Hertz
potential on the two conductors is zero; thus, we have the boundary-value problem

oM (a,p,z) oM (b,p,z)

VEM(r)+k*M(r) =0, o b 0. (A4.2)

Proceeding as in the TM case, we write

M(p,9,z) = g(p,p)h(z) (A4.3)
and obtain

Viglpp) @) e (Ad.4)

g(p.p)  h(2)

where g satisfies

p;(piij+ ?;f +u’p’g(p,p) =0, (A4.5)
Letting

g(p,p) = R(p)D(9) (A4.6)

where @ is defined in (A3.9), we get that R satisfies Bessel’s equation (A3.10) with v replaced
by u; thus,

R, (p)=c,J, (1, p)+d,Y, (1,p). (A4.7)

From the boundary condition (A4.2),

¢, J, (u,a)+d,Y, (u,a)=0

' (A4.8)
¢, J,, (u,b)+d,Y, (u,b) =0
and from this we get the condition
T, (u, @Y, (1,6~ I, (1,b)Y, (1,a) = 0. (A4.9)
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This is a transcendental equation with roots x,, , n
system are

J !
_ m (ﬂﬂ’ll’la) C

J (1 b
; - __“m (/umn )C
Ym (ﬂmna)

d,, = =" :
Y, (u,,b)

mn n

and for (A4.7) we write

Y, (44,,)

Rmn (p) = Jm (lumn p) - Ym (/umn p) '

For (A4.6) then we write

g . (p,9)=R,, (p)fpme (@)

o o

=1 2,... . For these roots, the solutions of the

(A4.10)

(A4.11)

(A4.12)

These functions are orthogonal in the sense of (A3.18) and can be orthonormalized.

As with (A3.19), the solutions of % in (A4.4) are given by

h:;rn (Z) — eiil(mnz

where

sz _ILIWH‘IZ ' k2 > llenZ
_i\/ﬂmnz _kz 4 ﬁlmn2 > k2

(A4.13)

(A4.14)

For the eigenfunctions of the magnetic potential in (A4.3), we can write

M;ne (pl (01 Z) = eiiKng Rmn (p)éme (¢) .

o o

(A4.15)

From (A3.23), the corresponding functions for the electromagnetic fields are

M,

mn

TH (pp,2) = 2V VXM ] =

o

2
z
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o’M*
TE Hpte (p,¢,2) — apazo — iiKm,, eti)(m,,z Rmnr (p)(p ) ((P)
O’M*

+ mno iKmn +iK,,,z !
TEH¢7g (p!¢)z) = = i € " Rmn (p)dj e (¢)
mno ,05(00/32 p mU

OM*
) KZ "y KT '
TE Epie (p) (0,2) = - = - e Rmn (p)cp e (¢)
mnu ,0 a¢ p mu
OM*

mn

PET (g2 =ikZ — T =ihZE" R, ()2 ().
mn /% i

We note that all boundary conditions are satisfied.

A5. TRANSVERSE ELECTROMAGNETIC WAVES

(A4.17)

(A4.18)

(A4.19)

(A4.20)

In this case, the z-component of the electric and magnetic fields is zero. From (A3.1) and
(A4.16), this implies that the fields have a e** dependence. From (A2.3), the part of the electric

field due to the electric Hertz potential is

TEME(r) =V xVx[IT(r)z] = Vx[VII(r) x 2] = =2V II(r) + j [VIT(r)]

- 2{1«217@) + ”’?;H(r)} +V, [5]7(1')} .

z° Oz
Since the z-component is zero, we have that

M E(r) =V, Vg ir)} .

Write
TEM Ei (r) — eiikz ei (p) ’ p — (X, y) ]

From this

O=V'[TEMEi(r):| =V(eiik2)-ei(p)+eiikzV-ei(p) :eiikzv_ei(p)
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so that

V-.e'(r)=0. (A5.5)
Since in (A5.2) the electric field is expressible in terms of a scalar function, we can let that
function be e** I*(p) , so that we can write for (A5.2)

e (p)=-VV(p). (AS.6)
From (A5.5)
VV*(p) =0. (A5.7)

The general solution of this is

Vi 0)=U, ()2 () (A5.8)

o

where the angular function is defined in (A3.9) while the radial one satisfies the differential
equation

p°U, (p)+ pU, (p)—m?U,(p) =0. (A5.9)
This is an Euler-type equation with solutions
Uy(p)=4,Inp+B,; U, (p)=4,p"+B,p", m=12,... (A5.10)

If we reconstruct the angular component of the electric field using these solutions, we find
that, for the boundary conditions to be satisfied, we must have

A4,a" +B,a™" =0
@ T Ond S om=12,.. . (A5.11)
Ab"+B b" =0
This system has only the trivial solution unless a = b, a case of no interest; thus,

A =B =0, m=12,. (A5.12)

and, for the potential, we get the simple expression
VE(p)=4,Inp+B,. (A5.13)
The unknown constants are determined by the potential difference between the two conductors.

For example, if the inner conductor is at potential 7 and the outer at zero, then the boundary
conditions give
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AyIna+B, =V

(A5.14)
A, Inb+B,=0

from which we determine non-trivial values for the constants.

If we follow the same line of reasoning using the magnetic Hertz vector, we will find that we
must have the radial derivative of the potential equal to zero on the two conductors. This will
result in (A5.12) being true, but also that 4, =0; thus, the potential will be equal to a constant (

B,) and the fields will be equal to zero. We see then that, in the TEM case, the fields are
determined from a single scalar function, the electric potential.

A7. CONCLUSION

We have derived the eigenfunctions that may be present in the space between the two perfect
conductors of a coaxial line. The TEM mode will always be present, irrespective of frequency.
The presence of other modes depends first and foremost on the feeding arrangement. If the fields
of the source are independent of the angular direction, so will the total fields. If not, then a
number of modes is possible, depending on the dimensions of the inner and outer conductor. We
note that both in the TM and the TE case we have a term (m = 0) independent of ¢.
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PART 3
NUMERICAL SOLUTION OF INTEGRAL EQUATION FOR COAXIAL LINE

ABSTRACT

This is the third part of the report on the formulation of the problem of radiation of a coaxial
line into a half-space in terms of BIEs. In Part 2, we showed that the problem can be reduced to
solving a single, scalar integral equation. Here, we convert the scalar integral equation into an
infinite system of linear algebraic equations. We also express the coefficients of the system in
terms of single integrals, and proceed to show how to compute them.
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1. INTRODUCTION

We proceed with the numerical solution of the integral equations obtained in Part 2. The
geometry is as in Figure 1.1. In Part 2, we found that the coefficients of the current density
expansion can be determined by solving a single, scalar integral equation. In Section 2, we begin
with the scalar integral equation, substitute in it the expansions for the unknown linear current
densities and perform the two—dimensional integrations to end up with one equation in an infinite
number of unknowns. The coefficients of the equation are Sommerfeld-type integrals. In Section
3, we use the orthogonality properties of the expansion functions to generate an infinite system
of linear algebraic equations. The coefficients of this system are integrals of four distinct forms.
In Sections 4 through 7, we discuss how the integrals are computed using Mathematica®
(reference 1). In Appendix A, we evaluate analytically the integrals used in Section 3.

z

o o

z=0

D D
S > n S, Sa—>ﬁ<— Sy

- 7 — z=-d

—>
a

v

b

Figure 1.1. The semi-infinite coaxial line of inner radius a and outer radius 4 is fed at
z=—. At z=0, it opens up into a half-space, its outer conductor becoming a plane
that extends to infinity. All surfaces are perfectly conducting.
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2. INTEGRAL EQUATION

The integral equation is given by (5.8) of Part 2 and we repeat it here

jha(r)MdS+ jhb(r)MdS —u (), r'ec
4 p' p

Sy

where

VY B,P, ()

In(x)p =i

YV ‘ ey 2KYV & B,
h _ —ikz _ A +ikz | n Honz
a(r) a|n(l)(e ° ) ra ;}/O(VOna)e

u, (r) = (L 4)

YV , , 2ikYV & B -
h __ _,kZ_A +ikz n 400
»(r) bln(Z)(e ) b ;Yo(mb)e

and

! 1 < ’ ’ A
g(r,r') =_EZ‘€1 cosl(p—")F,(p. p',2,2")

/=0

with

80:11 81221 l:112|1 E(p:prvznzr):J.:Jl(ap)'jl(ap,)e

—‘z—z"\/ﬁ ada

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

We want to accelerate the convergence of the integral in (2.6). To this end, we split the
integral in two parts, a static part and the rest. From (2.6), the integral corresponding to the static

Green’s function is

H/(p p'\z,2) = [ Ji(ap)J (ap))e ™" da
and what remains in (2.6) is

G (p,pz2)=F(pp.zz)-H(p p'zz)

@ n| & e—‘Z—Z" i —z-za
- e )| * e e
a” -k

For the integral equation in (2.1), we can then write
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—41%2:515[ h,(r)cosl(p—¢")

—;rig,jh (r)cosl(p— o) 10 (" Ph2.0) 4

ﬁG(ap 2,0) ¢

é’G(bp ZO)

——Zg,jh (r)cosl(p— ')

oM, (b p 205 - (). r'eo. (2.9)

——Zglj.h (r)cosi(p—¢")

From (2.2), (2.3), and (2.4), the current densities are independent of the angular direction. We
can then replace (2.9) by

oG, (a p z, O) gjo I (r) é’HO(a,p’,z,O)dZ
—o 2 0")!
é’G(bsz) éj-h()é’H(prO)
17/

——jh()

——jh()

=u (r'),reo. (2.10)

We deal with each of these integrals separately. For the second one, we use (2.3) and (2.7) to
write

a o JdHy(a,p',z,0) W0 e e\ 9Hy(a, p'2,0)
=—\| h(r 0 dz = e —A4e 0 dz
J- (1) ap' 2In(;()-[ ( ) ap'
_ikYVZ“: B, J~0 g JH, (L;'L,)”Z’O)dz
w »

T a2 Y, (VOI‘I a)
Yv

2In( ) 7o

Vs B [ gzeer O {7 dady(@a)y(ap))e 2.11)
7 w3 Y, (vy,a)’° ap' 7o

—za

J‘ dz( zkz_Ae—ikz)aé)'

We require that z> & >0 so as to make the integrals in « converge absolutely and uniformly.
This allows for interchanging operations; thus,

12 — Yy zkz -4 e—lkz )
2In(y ) é—>0 0”,0
_ lkYV . Bn —idg,z =20
T 3l (vO a) E—>0 0”
(ik-a)e —(ik+a)e
:L I dad,(aa)J,(ap’) —¢ —Ae.
2In(;()é—>00”p ik—a ik +a
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ikYV & B, g ortee
7 3 Y (v, a) 6—>0 0” zﬂﬂn +a
(ik-a)e (ik+ax)
€ €
= IIm dalJ,(aa)J (ap)a + 4
2In(y) JILEACORCTY {'k—a ik+a}
YV & B ) w —(idg,+a)e
+ ik ! IImI daJ, (aa)Jl(ap')ae.i : (2.12)
w3 Y, (v,,a) 000 iy, +

We re-write this as

I, = ||mj daJ,(aa)J, (ap)|: gliFa)e | Ae—(m)e}

2In(x)
ik af)g e— ]

iKYV . e el (th+e)
- lim| daJ,(aa)J, (ap' + A4
2|n(;()H0J.0 o(@a)i( p){a—ik a +ik

LY B im ) “daJ,(aa)d,(ap’)e o)
T YO (VOna) 040
. o B —~(idg,+a)e
_iky D 2,8, hmj da,(@a)J,(ap) S (2.13)
r 3 Y,(v,,a) 0 id, +o

In the second and fourth terms, the limits can be moved inside the integrals. The first and third
are, by definition, Weber-Schafheitlin discontinuous integrals (reference 2, pp. 398-410).
Dropping the limit notation, and thus having only one such integral, we have that (reference 2, p.
404 and reference 3, p. 100)

wv D O<u<y

. 1
jo J )] (ve)da =1 o, u=v . (2.14)
0, u>v

We then have

_YV(A—l) ikYV
- 2In(x)p" 2In(x

'kYVi B, zkYVZ i4,B, [ Js(@a)s, (ap")

ﬂp, YO(VOna) T =1 YO( ond ) 0

1,

Ida] (aa)J(ap)[ 1' + A'}

—ik a+ik

(2.15)

id, +a

The fourth integral in (2.10) is the same as the second with a replaced by 5 and a reversal in
sign because of (2.3) and (2.4); thus, we have
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OoH, (b, p', z, O) zkYV
op' " 2In

j Jo(ab)J,(ap’)

0

+lkYVz lﬂ'On n
r 3 Y,(v,,b)°

1 A
J' daJ, (ab)J(“p){ _ik+a+ik:|

%n —. (2.16)

We turn to the first integral in (2.10)

oG, (a,p’,z,O)dZ
ap'

a o
L= @

0 O ,
= %J_deha (r)é,’d‘fo Jo(aa)J,(ap )[

e }za
_ IO

Na? -k )
— d —lkz -4 +ikz
2In()3~ Ao de)

o > ,
ﬂL%w@Mw)
kY& B

_ n zﬂozi
- Z;”VO 2 %d ze j Jy(@a)J,(ap’)| o

e |da

e |da . (2.16)

Na?-k?

We re-write this as

N
U J. daJ,(aa)J,(ap’ ).[ dz e Ae*’kz) LA ——
T2 In(x) a? — k2
. lkYV = B —idy,z ae_z @ik _ e—za
T a2 Y, (VOna) é) a2 —k2

v o

j dal,(aa)J,(ap’) “ 4 ! + 4
2In( N zk—«/a _ 2 zk+«/a 2 Tik—a ik+a

- z J‘ dad,(aa)J,(ap’)

T aY, (VOna) aop’ (.18)

Va? -k (i/lo” +Va? —k2) iZg, |
We compute

o 1 _\/zyzz—k2 (ik—\/az—kz)—a(ik—a)
e (i~ —k2)+ik—a N (k= =7 )ik ~a)
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ik (Vo' =k —at) & -ik* +k* (Ja? -k +a)
N — K (ik =~ )(ik ~a) \/az—kz(zk— o —kz)(zk a( o -k +a)
) —ik+Na® —k* + o
Ja? —k? (ik—\/oz2 —kz)(ik—a)(\/ﬁ+a)

a2+a(ik+\/a2—k2) o+ ik Ao — K

_ e _ g2 (2.19)

a’Na? —k? (ik—oz)(\/oz2 —k? +a) aNa® —k? (ik—oz)(\/oz2 —k? +a)

—-a 1, a—ik+Na® —k°

S (2.20)
N (ik+\/a2 —k? ) ik + o aNa® -k’ (ik+a)(\/a2 —k° +a)
o 1 a(idy, +a)—a® —k? (MOn +a’ —kz)
Ja? — i (mo,z a? i ) JZ RN e (MO” a? i )(MO,, +a)
id, (05—\/0{2 P )+k2
N (mo,z a? i )(uw +a)
_ id,, +a+Na’ —k? (2.21)
Na© —k? (MOn +Va’ —k? )(iﬂOn +a)(a+\/a2 —k2)
We substitute the last four expressions in (2.18) to get
__ YVk? a+ik+a® —k?
to2In(x) g aNa® —k° (z’k—oz)(\/a2 —k° +a)
4 a—ik+a® —k°
aNa® —k? (ik+a)(\/a2 —k? +a)
S 3uT . Jy(aa),(ap)|id, +a+Na® —k?
_ikYv B, 0 0 0 ( ) 2.22)

do .
s HZ; Y (vo,@) "2 Ja? —k? (l'/%,, +Va® —k? )(iﬂOn +a)(a+ a? —kz)
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Similarly, for the third integral in (2.10), we have

oG, (b, 0
*J. By () ( ,0 2,0)
2 . 2 2
_ YVk i,rdaJo(ab)Jo(ap') a+ik+Na® -k
2In(x) ap' aNa® —k° (ik—a)(\/az —k° +a)
iy a—ik+\a® -k’
aNa® —k? (ik+a)(\/a2 —k? +a)
YV & B 0 - A (ab)JO(ap')(i/?On +a+a’ —k2)

(2.23)

o B0 P T (N (i <)o )

In the next section, we convert (2.10) to an infinite system of linear algebraic equations.
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3. SYSTEM OF EQUATIONS
We write (2.10) in the form
—(L+L+1,+1,)=u,(r) v ec (3.2)

where the four terms on the left are given by (2.15), (2.16), (2.22), and (2.23), while the term on
the right is given by (2.2). We proceed to collect coefficients of the unknown terms

YVE? O e Jo(aa)JO(ap')(a—ikJrW)
Y2 () 't daam(ik+a)(m+a)
DG J-mdaJo(ab)JO(ap')(a—ik+m)+ .
2n(2) P aat -k (ik+a)(Ja' -k +a) 2In(x)p

N ikYV J.wda Jo(aa)J(ap’)  ikYV dea Jy(ab)J (ap")
2In(;() a+ik 2|n(;() o+ ik

Jy(aa)J, (ap)(zﬂ@n+a+ a —kz)

+ik3WiBn 1 i,roda
7 d o | h(e,a) Pt ot i (iﬂon +a? —k? )(l% +06)(0‘+ va )
ey J,(ab)J, (ap')(z’ﬂon +a+a? —kz) L1
IS L _
Tovab) 0 G (i, e R (i, +a)(a+va2 k) P X (5,0)
1/10 = Jy (aa)Jl(ap') iy, T
k (v a) da i ta K ( o,zb)'[ Jo(ab)J,(ap’) ﬂOn o K Py, (P)}

e A wdaJo(aa)Jo(ap’)(a+ik+m)
20(2) P afa? -k (ik-a)(Na* -k +a)
e o wdajo(ab)JO(ap’)(a+ik+W)
2(2) P e~k (k- a)(Ja? -k +a)

vwoo ikyv = Jy(aa)d(ap) ikYV e Jy(ab)J(ap’)
+ p _[ : + _[ da i .
2In(x)p" 2In(x)% a—ik 2In(y)° a—ik

(3.2)

We combine terms above to get
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)  [s(@a) - Ty (@b)] (ap')(a ik +a? -k ) .

k* d L=

2In(z) | ' aNa® -k’ (ik+0!)(\/a2—k2+05) i
[/ (@a) = Jy (ab)]J; (ap')}

o +ik

+ik j: da

{ Jo(aa) _ Jo(ab) }JO (ap')(iﬂw +a +W)

YO (VOna) YO (VOnb)

st iB Jm a

=1 /aZ_kZ(l- n+/a2—k2)(i n+a)(0:+ /az_kz)
{JO (@a)  J,(ab) }J (@)
T T A IRATT) S
kY, (vg,a)p' iy, + oo P

1 P [Jo(aa)—JO(ab)]JO(ap')(a+z'k+\/a2 —kz)
- e

2In(x) P ’ aNa® —k? (1'16—05)(\/062—k2 +06)
L] de [Jo(aa) - J, (ab)]Jl(ap')}.

|
ol a —ik

(3.3)

To convert the integral equation to a system of linear algebraic equations, we first integrate
both sides of this with respect to p’ from a to b. In effect, we perform the integration

[\ 1(ap)dp = i [ 7yt = —i [ (e = 7o (““); Jo(ab) (3.4)

and also use the results in Appendix A. The end result is

[Jo(ca) - J, (ozb)]2 (a—ik+\/a2 —kz)
d
2|n I 0! am(a+ik)(m+a)

[Jo (aa) - J, (ab)][ Jo(aa) _ Jo(ab) }(MO” +a+~a® -k )

YE) (VOn a) Y;) (VOn b)

\/0527(1'&0” +m)(iﬁon +a)(a+m)

[Jo(aa) - J, (ab)]
a(a+ik)

+In(y +zkj da

ik’ & =
+7Z=;4B” _.[0 da
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Jo(aa) Jo ((Zb)
U(a@—Jda@ﬂ;“%ﬂ)_KQMM}

In
s Y(v0 a) k2 -[ a(ildy, +a)

[Jo(aa)—J, (0¢b)]2 (cx +ik +a® -k )
d
2'” I 05 aNa® —k° (oz—z‘k)(\/oz2 -k +(x)
[Jy(ca) - J, (ab)]
+In(y mjd (k) . (3.5)

We next multiply (3.2) by p’POm' (p") and integrate from a to b

[Jo (ara) - J, (ab)]{ Jo(aa) _ Jo(ab) }(a—ik+\/a2 —kz)

YE) (VOma) YE) (VOmb)

7rln I da Ja? —k° (a+ik)(\/a2 —k? +06)(062 —Vo,nz)

o

RACTORRE (ab)]u ii’j“j) - ; ii“bb))}
m 0\"0m a

(a+ ik)(a2 —~ Vomz)

—%Eda

{Jo(aa) . Jo(ab)}{ Jo(aa) _ Jy(ab) }(mo raa o

i 12k3 i B J' da Yo (VOna) YQ (VOnb) YO (VOma) YO (VOmb)
2 n
T n=1 0

o =K (i, +a® =K |(i%o, +a) @ +Ja” =K (@’ -,

{ana)_.gxab)“:ﬁxaa)_ Lgab)}a
J‘ Y,(vo,a) Y, (v,0) || Yo (vona) Yo (vy,b) 1{ 1 B 1 }5
(Mo,z +a)(a2 _V0m2) i [Yo (VOnb)]2 [YO(VOna)]Z "

Jo(aa)  J,(ab) . T
- [Jo(aa)—Jo(ab)]{Yo(Voma)—)Io(vomb)}(a+zk+\/a -k )
dea a

W(a —ik)(\/m+a)(a2 _VOmz)
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JO (aa) Jo (OKb)
[Jo(@a)-J, (ab)]{ Y.(voa) T, (VO,,,b)} 3

(a— ik)(a2 —~ vOmz)

+ikj0°°da o m=12,... (3.6)

The last two expressions constitute an infinite system of linear algebraic equations in an
infinite number of unknowns (4 and the B,). If in (3.5) we set all the B, equal to zero, then we

get for 4

Jyl@a)=Jo@d)] ["da [o(aa) = Jy@@b)] (@ +ik-+a? —k )
a(a—ik) 0 am(a—ik)(\/ﬁ+a)

Jy(@a)-Jo@)f [ [o(aa) = Jy(@h)] (@ —ik-+a? —K )
a(a+ik) 0 o /az—kz(a+ik)( /az_k2+a)

In(;()—ikj.:da[

A=

In(x)+ ikjowda [

3.7)

We can combine the integrals to reduce this to

e [Jolaa) = Jo(ab)]
In (Z)—lkjo da Y
= oNa® —k (3.8)

Jo(aa)—Jy(ab)]’

aNa® —k*

The issue we must address now is whether we should use such combinations in (3.5) and (3.6).
What we have accomplished in splitting up the Green’s function is to increase the rate of
convergence of the integrals in « by an order of magnitude. Had we not split the Green’s
function, the integrals in (3.8) would behave as o, as a — «. In (3.7) and (3.8), the integrands
behave as «~*. We have thus gained an order of magnitude in the rate of convergence. In fact, in
the integral that does not involve the static term, the behavior is «™. In the static term, we
altered the original behavior of o by integrating part of the expression, with the rest behaving
as «°. This is true of all four terms. Since the acceleration of convergence has been
accomplished, we should feel free to recombine the remaining terms. The only reservation here
is the following. Looking at the numerator of (3.7), we see that the first integrals behaves as « 2,
while the second can be split into two integrals, one behaving as o™ and the other as «°.
Whether the last two terms are much smaller than the first cannot be concluded from these
observations. We proceed then to combine terms in (3.5) and (3.6).

In(;()+ikjomda[
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First, we perform the following calculations

i, idy, +a+a® -k’

Kali, +a) o> =k (i, +Va? =k (i, +a)(a+m)
i, N = (120, 4N =k )@+~ |~ Koar(iy, + @+ =K
kzam(uw +\/ﬁ)(mon +a)(a+M)
iﬂo,lm:(iﬂon +m)a+iﬂonm+a2 —kz}—kza(iﬂon +a+\/0527)
kza\/ﬁ(u@n +m)(,ﬂw +a)(a +m)
i%nm:(am& +m)a+iﬂ@,lm—k2}—k2a(iﬂm +a+m)
kzam(% +«/ﬁ)(iﬂon m)(mJW)
(a+i%, +\/oﬂ7)a[mwm—kﬂn%nm[%m—kﬂ
kzam(% +m)(mo” +a)(a+\/m)
:i%nm_k{ (a+mo,1+m)a+uonm
kzam(%n +W)(Mw +a)(a+m)
}%nm_k{ (o> =k Ja+ i, (@ +Ja® -7
kzam(uw +m)(z’ﬂw +a)(a+m)

3 iy Na' —k* —k?
Kava® -k (MO” +a? —k? )

(3.9)

Also,
kza(a—ik+\/a2 —kz) ko
Nal —k° (0{+ik)(\/a2 —k? +a)(a2 —vOmz) ) (0{+ik)(052 —vOmz)
kza(a—ik+\/a2 —k* )—ikax/az —k* (\/052 5 +a)
B Vo' -k (a+ik)(\/a2 —k? +0()(0(2 —VOmZ)
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ik(a—ik+\/a2 -k° )+a2 -k +aNa® —k?
Va? —k° (a+ik)(\/a2 —k +a)(a2 —Vomz)
ik(a+\/a2 —k? )+a2 +aNa® -k
Vo i (a+ik)(Na? =i +al|(a® -V,
( ) Om
(a+\/a —k° )(zk+ ) ) it 10
a’ =k (a +ik) ( a’ -k +a)(a2 Ve, o -k (az—volnz) .

=—ika

=—ika

=—ika

while

(70, + @+ = ) i
o =i (i2g, N =k (2, + )@+ Vo’ =k ) (o —v, 2) K (id, +a) (02 ~ vy, )
(mo +a+m)ak2 i, m(% +a? kz)(a+ o kz)
KN = (i, 4o =k )(idg, + ) e+ =k ) (@ = v,,)
(MOH +a+m)ak2 —iﬂmm:i%n (a+m)+am+a2 —kz}
KN~k iz, +a® =7 )(idg, + )@ +a® — k7 ) (@ v, )
(z‘/lo” +a+m)ak2 —i%nm:a(aﬂﬂw +m)+iﬂonm—k2]
kzm(mon +\/ﬁ)(mon +a)(a+\/ﬁ)(a2 v,
(a+i/10n +W)(k2 —M%W)a—iﬁo”m(iﬂ%m—kz)
KN =k (i, +a® =7 )(i2g, + @)@+ a® =7 ) (@ -, )
a(i%nm_y)[(a%n+W)a+mwm}
KN =k (idg, 4+ =k )(idg, + )@ +Ja? =k )(a® -1,
a(z'ﬂmm—kz)((z+m)(a+ilon)
KN =k (i, 4+ =k (i, + )@+ =k )(a* -1,
(i, N =k ~ 7
KN = (i, o =K (o =1,

=

=

=

=

(3.11)
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and
kz(a+ik+\/a2—k2)a o ket
m(a—ik)(\/az —k? +a)(0{2 —Vo,nz) ' (O‘_ik)(

2 2\ 2\’
a’-v,, ) Vol —k? (az—vo,n )

(3.12)
We substitute these results in (3.5) and (3.6). From (3.5)
A In(x ij i [/, (aa) - J, (ab)]
2In(x) aNa® —k?
ik & In(x)
I {_Yo(vona)
[, (cra) — J, (arb) {J o(@a) _ Jo(ab) }(mo,,\/az k2 —k2)
+j°°da Y (vo,a) Yy (vy,0)
o K (i1, +a? R
! e J(aa) J(ab)
- Zln(l){m(;()-zkjo da } (3.13)
while from (3.6)
Jo(aa)  Jy(ab)
[ da olea) (“b)]{mvoma) Yo(vomb)}
o Ve F (o -1y,
2In 1 1
B, — > (O
Zx {[[Yo(vonb)]z [Yo(vona)]]
Jy (aa) _ Jo(ab) || Jy(aa) _ Jo(ab) |1, 2 72 12
0 dJYo(vona) Yo(vo,,b)}{z,(voma) mvo,,,b)}(”"" K K
° m(z’ﬂon +m)<a2 —Vomz)
Jo(aa)  Jy(ab)
Jo(ara) - J, (ab =
_ J‘mda[ (a’a) (a )]|:Y0(V0ma) Yo(vomb):| 1o (314)
o Ve K (o -, ) -
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The last two expressions constitute the final system of equations.
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4. CALCULATION OF THE FIRST INTEGRAL IN (3.13)

The first integral in (3.13) is

P CHCORE ()]

aNa? —k?

The square root in this (and all other expressions) must be chosen carefully. It appeared first in
the Green’s function Fourier-series expansion, specifically in the integral in (2.6). For this
integral to converge, the square root must be real. With & >0 but small, we replace the original

expression by va’ —k* +ie . This root must have a positive real part for o > k

(4.1)

1 Lant[ 2
VT = [(a ) e e
z\/az_k{w( : ﬂ @k (42)

2\ a? —k?

which indeed has a positive real part. For & > «, we must choose the branch of the arctangent
function that gives a positive real part and has a dominant imaginary part as ¢ —» 0. The
appropriate branch is the one between 7z /2 and 37/2

Vo =K+ = (o - k7) +2° f* Rt
~ ik — o {1—’( d ﬂ: . £yl -d?, k>a. (4.3)

2\ -’ K2 — P

A simple calculation shows that this is equivalent to setting

Jo? -k =ik —a? —ic . (4.4)

In general, we write

— | N’ -k, a>k
a” —k° = . (4.5)
Nk —a®, a<k
Using this information, we write for (4.1)
i [ol@a)=Jy(@b)] oo [Jo(@a)=Jy(ab)]
[=-if da +[ da =—il, +1,. (4.6)

aNk? —a? aNa® - k?
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The first integral in (4.6) can be computed using a polynomial approximation of the Bessel
function (reference 4, pp. 369-370). Since

ka+b

<1 (4.7)

we see that the argument of the Bessel function is smaller than two. We elaborate further on this.
Let

a=pb , 0<p<l (4.8)
Then, in place of (4.7), we have

2
1+ p

kb <

<2. (4.9)

We also have that

k < vy, (4.10)
where v, satisfies

Jo (vo,a)Yy (vo,0) = Jo (v,,0) Yy (ve,a) =0, n=12,.. (4.11)

Using the values of v,, from reference 4, Table 9.7, p. 415, we can provide bounds for kb and .
The results are shown in Table 4.1.

Table 4.1. Bounds on kb and k.

p=alb Ve (M) kb < k<mb) | pt=bla
0.8 12.56 1.111 12.56 1.25
0.6 4.697 1.250 4.697 1.67
04 2.073 1.429 2.073 2.5
0.2 0.7632 1.667 0.7632 5
0.1 0.3314 1.818 0.3314 10

An alternative way is to use Mathematica® (reference 1) to compute this and all other
integrals. This is what we did in practice. We first re-write the first integral in (4.6) as the sum of
two integrals

1 [Jo(aa) = Jy(@b)] Vi o L Jk[JO(aa)—Jo(ab)]z @, 1

:k2 0 a o k2 Jo © —o? a:k7(111+112)
(4.12)

I
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For the second integral, we use the transformation
=k -a’ (4.13)

to re-write the integral in the form

I, - J~Ok [Jo (aa)—Jo (O:b)] ada _ J«ok[JO( ,—kz — a)—JO( ,—k2 —tzb)Tdt. (4.1

k* —a
For the second integral in (4.6) we use the following transformation (reference 5, p. 174)
1* =a? —k? (4.15)

to get

i [JO (NE + k) = Iy (aNE + K )T
d

L= " ‘. (4.16)

We split the interval of integration into two intervals

IL[Jo(bm )= J, (aN? + k2 )T [ I NFTE) (@ W)T
I, - )

t
0 t*+k° £ +k°
=1, +1, (4.17)

0

dHL

where L is a large positive integer. In Mathematica® (reference 1), we set it equal to 10,000. The
last integral in (4.16) is computed by using the asymptotic form of the Bessel functions

JO(Z)“‘\/ZCOS(Z—/Z'/“-), ‘z‘—)oo. (4.18)

Thus,

[y (bar) - J, (aa)]2 = 1{1 i 1 n sin(2aa) N sin(2ba)

7ala b a b
_Zcos[a(b—a)}i_bsin[a(bw)] . 0( L j} (4.19)
and
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2
1 1 1+;(kj
(24
P T o
o’ 1—(]
(24

We substitute in 7,,

2
L w[JO(b\/tz +k%) = J, (avt? +k2)J a [Jo(aa)_Jo(ab)]z p
2 .[L 2 + k2 b=z oa? — i ¢

11 1)\¢» da 1 1 1
L1l da 1 (1.1} 4.21
72'(61 bjLLZH‘Z o’ 27z(L2+k2)(a bJ @21

We substitute (4.12), (4.14), (4.17) and (4.21) in (4.6) to get

1=~ da [Jo(@a) - J, (@b)] [“da [Js(@a) - Jy (@b)]

aNk? — ot aNa® -k’
_I;{jk[‘fo(““)“]o(“b)] i da+fk[J0(\/k2tza)JO(\/kztzb)Tdt}
0 a 0

L[Jo(bx/tz+k2)—Jo(ax/t2+k2)T . L1
+] 2 2 di + (+] (4.22)
0 t°+k 27r(L2+k2> a b

This concludes the description of how we evaluate the first integral in (3.13).
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5. CALCULATION OF THE SECOND INTEGRAL IN (3.13)

We continue the evaluation of the integrals in (3.13). The second integral in (3.13) is

Jolaa)  Jy(ab) |. 2 2 2
[Jo(aa)—Jo(ab)][Yo oo (VOan(zMa K -

aNa® -k (i/”tOn +a? —kz)

(5.1)

Ao, = —lg/vof K, v, >k (5.2)

fl@abivy) = [Ty (@) -J, (ab>]{;°((v“”2) - ;"((V“’ZJ (53)

and (4.5), we write

0 f(a;a’b;VOn)( VOnZ_k2 az_kz _kz)
I=| da

’ aNa? -k (\/Vonz — i ++/a’ —kz)
k f(a;a,b;v(,n)(i DTN o —kz)
=| da
° iaNk* —a’ (\/VO,[Z —k* +iNK* —a? )

Flaabivy Yo -k Ja? — k2 —kz)

aNa® —k° ( V. —k* +Ja? -k )

+ L da =1 +1,. (5.4)

Consider

ivo,. —k*NK? —a® -k (i\/vo”2 N —kz)(\/vo,l2 — K =ik —az)

ioNk? ~a* (\/vo,f ~ K +iE? —az) iak* —a* (v, ~a’)
z'(vOM2 —kz)\/k2 ~-a’ —kz\/vOn2 —k° +\/V0n2 —k° (k2 —a2)+ik2\/k2 -a’
B ioNk* —a? (Vonz —0{2)
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. 22
ivy, Nk: —a® —a®v, Ve, Canv, —k

ioNk? - (Von —az) Ot(vo”2 —az) VK —a? (VOHZ —az) .

Then

a f(a;a,b;vo,q)(z\/vo,f VRN —k2)
I = a
Lo iok? —a? (\/VOHZ —k* +ik? —az)

f(aabv()n)da ¢ Sflaabiv,)ada
G e I D oy

= VOnZIll +l\l VOnz _k2 ]12 .
Let
=vk’—a?, a=vk*-s*, sds=-ada.

Then

I _J‘ f(a;a,byv,,)ada J-f(\/ —s%;a,b;v,,)ds
N VK — (v0n -a ) 0 -k +s°

and (5.6) becomes

J‘f(“ab‘/on)d“ \/71 f(\/kz—s a,byv,, )ds.

—k? +5°

alvo? )

We also write the second integral in (5.4) as the sum of two integrals

f(oz;a,b;VO,,)(\/VOn2 — kPN -k —kz)

e (i + e =)

100

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)
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=1, +1, (5.10)

where K is a large number. The last integral is evaluated asymptotically, while, for the first, we
use the transformation

N’ =k, a=K+7, tdt=ada (5.11)
to get
o S@abivg)(Jn - Vet -k k)
Iy=] da am(m+m)

JKzi_kzf(\/m;a,b;1/0,1)(\/1/0’127_k2 —kz)
o (k2+t2)(m+t)

We choose K so that the upper limit of integration is a large integer L; thus,

dt . (5.12)

L=vK*-k*, or K=~I+k*. (5.13)

In the second integral in (5.10), we may rationalize the denominator to get

) f‘(a;a’b;VOn)((zz\]VOnz_k2 _VOn2 ~‘az_kz)
Vi am(oﬂ —vOnz)

I, = da (5.14)

where the lower limit of integration is large enough so that the integrand does not exhibit any
singularities.

We replace (5.9), (5.12), and (5.14) in (5.4) to get

jf(aabv()n)da \/7] f(\/ —s? abv()n)ds

a(vo,, —az) —k*+5°
SN a by, (w/ Tk t—kz)
+IO (k2+t2)(\/v0n2—k2 +t)

dt
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J‘w f(a;a,b;von)(azm_vofm)
+ 2,12
v e =k (o —v,.)

The first three terms are computed numerically in Mathematica® (reference 1), while the last
one is evaluated asymptotically.

da=J +iJ,+J;+J,. (5.15)

The asymptotic evaluation proceeds as follows. From (5.3)

flaia,bv,,) = ! { r 1 sin(2aa) N sin(2bc)
a¥y(vo,a)  bY,(vg,b)  a¥,(vo,a) Y, (v,b)
1 1 |cos[a(b-a)]+sin[a(b+a)] .
{%(Vona)Jr%(vo,,b)} Jab +0(a”) (5.16)

while

_ k2 2
A o (5.17)

1 { 1 1, sin(2aa) _sin(2ba)
o

+
aYI) (VOna) bY;) (VOnb) aY;) (VOna) bY;) (VOnb)
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I 1 cos[a(b-a)]+sin[a(b+a)] Voo =K )]
o 50 i)

_l’_
Yo (vo,a) Yy (vy,b) ab ot a’
2 2
-k
Vo - LN S (5.18)
421 aYO (VOna) b)/() (VOnb)

From this and (5.15)

. f(oz;a,b;1/0,1)(0(2«/1/0”2 —k? —VOnZ\/(lz —k? )
Vi a\/ﬁ(az —Vonz)

J, = da

VOnZ kz 1 + I 7&
73 aYO (VOna) b)/() (VOnb) Lokt ag

B Vo, —k [ 1 1 } (5.19)

= + :
27r(L2 +k? ) a¥y(v,,a) bY,(v,,b)

This concludes the description of how we evaluate the second integral in (3.13). From (5.15) and
(5.19), the final expression is

f(a;a,b; vo,l)da /7_ f(a;a,byv,, )ada
= I (v0n -a ) g I m(vo,zz—az)
SR a5, (v, = K= ) DT { 1 1

dt+ -2 +
aYE) (VOn a) vaO (VOnb)

+jo (k2+t2)(m+t) 27 (L +K)

. (5.20)
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6. THE FIRST INTEGRAL IN (3.14)

We proceed to evaluate the integrals in (3.14). The first integral in (3.14) is

[alaa)-, (ab)]{ Jolaa) _ Jy(ad) }

YO (VOma) YO (VOmb)

1= 6.1
! Voo =K (o —v,,?) ey
We write this as
[Jo(aa)_JO(ab)]|:Y‘]O(aa) _ JQ(OCb) :| . .
I = r’ 0 (Ve,a) Y, (v,0) _ Ioo fla,a,b;v,, )ada
o Ve (o v o Vo R (o 7]
& flaa,byv,, )ada = fla,a,bv,,)ada )
=- =—il, +1,. 6.2
b e (o) T (o) T 2
We use (5.7) to re-write this
[Jo(aa)—Jo(ab)]{ ;o(“a) _ Jo(ab” o
] :r’ 0 (vo,a) Y3 (vy,b0) :jw f(a;a,b;v,,)ada
_ iJ,Ok (WK -5%;a,b;v,,)ds +J-koo flea,byvy,)ada il 63)

2 2 2
Vo, —k*+s

Vol -k (az —VOmZ)

The first integral is computed in Mathematica® (reference 2). For the second integral, we
write

k f(a,a,b;v,, )ada = fla;a,bv,,)ada
I, = jk 0 ) +| 0 =1, +1,. (6.4)

2 2
Va? -k (az ~Vp,, FNa? -k (az ~Vp,, )

Using (5.11), we re-write the first integral in the form

L f(NK? +1;a,biv,, )dt oo fla;a,b;v,, )ada
12:.[0 tz_(vomz_kz) +IWW(QZ—VO 2)

St 220 f(NK® +1%a,b;v,, )dt oL (WK +1%;a,b;v,, )dt
~] : ] e :
0 e _(VOm _kz) Vou? —k2 +10 P _<V0m _k2)
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f(a;a,byv,, )ada

+J.\;;+_k2m(az _Vomz)

(6.5)

where L is a sufficiently large integer so that the last integral is free of singularities. The first two
of these integrals are computed numerically in Mathematica® (reference 2) while the last is
evaluated asymptotically. We note that the singularity at v, is removable and that the integrand

has a finite value there.

For ¢ - «
Fleabivy) :i 1 N 1 N sin(2aa) N sin(2ba)
T aYO (VOma) bYO (VOWtb) aYO (Voma) a),O (VOmb)
cos|al(b—a)l|+sin|a(b+a
YO (VOma) I/O (VOmb) \/%
and
a B 1
, -
No —k? (az—Vom ) o 1_(kj2 {1_[%,”)2
(04 (04
2 2
{1+;(kj HP{V&”] } 1+1(k]2 +(V0m 2
a a 2\« a
. 2 . : (6.7)
(04 (04
so that
f(e;a,byv,, ) 1 [ 1 1 } )
" = + +0(a™). (6.8)
\/az _k2 (0{2 —Vomz) ﬂ-a?’ aYO(VOrna) bYEJ(VOrnb) ( )
We can then write
T flaa,bv,, Yada 1 [ 1, 1 } 6.9)
JEaNa? =k (az —VOmZ) 27T(L2 +k2) aXy(ve,a)  bY(v,,0)

From (6.3), (6.5), and (6.9), the final expression for the third integral is
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.[ f(Wk? =s%;a,b;v,, )ds J- Font k210" f(NE? +1°5a,b;,v,,, )dt
0 t —(vo,n —kz)
L f(WEK* +¢%;a,b;v,, )dt . 1 [ 1 1 }

+ + .
o, 2—k? 4107 2 (Vomz iy ) 271-(L2 +k° ) a¥y(vy,a) bY,(v,,b)

Ve, —k* +5°

(6.10)
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7. THE SECOND INTEGRAL IN (3.14)

From (3.14), the fourth integral is

t%(aa)__~%(ab)}{~%(aa)__th(ab)}(b%nvzﬁszi_kz)a

7= J‘O"’ {Yo (vo,a) Yo (vo,0) || Yo (vo,a) Y, (vo,,0)

da. (7.1)
Na© —k? (Mﬂn +Va® —k? )(a2 —VOmZ)
This is similar to the previous integral. Letting
sl@abiv,)= 20 hlad) (1.2

YO (VOna) YO (VOnb) .

and following Section 5, we write

mg(a;a,b;Vo,q)g(a;a,b;vo,n)(mm—kz)a
" V&= (v~ 4 =K |(a” -, “
k g(a;a,b;vOH)g(a;a,b;VOm)(imm—kz)a
RN o (\/VOM2 _ + ik - )(a2 ~vo,?)
} g(oz;a,b;VOn)g(Ot;a,b;vo,n)(\/v()n2 k2ot —k? —kz)a

+[ da=1+1,. (7.3)

1

da

Using (5.5) in the form

; ,VOnZ _ 2 /kz —ad K ,Vonz EPe: ‘ V0n2 74

= +i

Vi =a? (o, =k viiE=at ) - () —a?) (v )

we write

I J’kg(a;a,b;VO,,)g(a;a,b;vOm) NP
e i(az _VOmZ) Vk? —a? (Vonz —az) (VOnZ —az)
_ Onzj-k glaja,byv,,)g(a;a,b;vy,,) od

0 2 2 2 2
(VOn —a )(VOm —a )
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HJ%M—kIl¢£§iﬁf:%%h3gf??LﬂaWaz—%fﬁfHJ%f—kﬁu. (7.5)

Using (5.7), we re-write this as

11 = _VOnZJ.k g(a;a’b;VOn)g(a;a’b;VOm)ad

(V0n2 _az)(vomz —az)
+zmjkg(mabvon)g(mabvo ( —t2)

0 (Von —k* +t )(Vom — k% +1 )
= _V0n2]11 + iy VOn2 —k*I,. (7.6)

We turn to the second integral in (7.3)

_&(asa,byvy,)g(asa,bv,,) (\/Von k*~\a? - kz)

Bk Ja? — i (\/Von —k* +a? —kz)(az —VOmZ) “

. g(Ot;a,b;VOW)g(a;a,b;v()m)(\/vo,l2 —k*Na? -k* —kz)a
o NP (\/VOnZ—kZ +\/a2—k2)(052—v0m2)

on g(oz;a,b;voﬂ)g(oz;a,b;v(,m)(\/vo,,2 N —kz)a
+

K, W(erm)(az _VOmz)

As with (5.12), for the first of these integrals, we write

mg«umm%pgamﬁwwwjﬁfiZigffﬁpkﬂa
R e
Wg(m;a,b;vo,,)g(\/m;a,b;v()m)(mt_y)
k (o 4]
Ny s SN+ a,byvy ) g (NP + K2 a kv, (mt_kz)
T e

dt

do

da=1,+1,. (7.7)

dt

dt
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K,2-k?

RCES (oo =8 ][ (0" #7)]

while for the second

glazabivy)glaa,bivy,) ( 2 o2~k v, m)
I, = IKm \/ﬁ((lz —v, )(C(z —Vomz)

As with Sections 5 and 6, we make the upper limit of integration in the second integral in (7.8)
be an integer. We can then write

7 a0 g(P+k;a,b; vo,z)g(\/m;a,b;vo,n)(mt —kz)
Ll (W+1)[ZZ ~(von’ —kzﬂ
, g(m;a,b;VOn)g(m;a,b;VOm)(mz—kz)
+J‘JV°"’2—"‘2”°74 (\/1/027—/%2 +t)[t2 ~(Vou” —&° )} .
) g(a;a,b;von)g(a;a,b;vo,n)(azm—vofm)a
e JaZ =R (o —v ) (@ o)

The last integral is computed asymptotically. We can approximate the integrand by
g(a;a’b;VOn)g(a;a’b;VOm ( V Va _kz)
Vol —k° (az ~Vy, )(0{2 Vo, )

VOn2 -k { 1 N 1
aYO (VOma))]O (VOna) bYO (VOmb)},O (VOnb)

g(t* +k%;a,b; vo,l)g(\/t +k%:a,b; Vo (\/v(,n )
d

¢ (7.8)

da . (7.9)

da . (7.10)

} o(a™). (7.11)

ra’
Then
} g(oz;a,b;vc,n)g(a;a,b;vOm)(oz2 Vol — k% —vy Na? -k )a
i o —F (@ =) =)
o Vo =K { L ! } (7.12)

+ .
21 (L2 + k)| @Y, (v, @)Y, (v, @) bY, (v, 0)Y, (v,b)

do

109



NAWCADPAX/TR-2013/115

From (7.6), (7.8), (7.9), and (7.12) we have for the fourth, and last, integral

<, 2 &lesa,biv,,)g(a;a,bivy,,) .,
1 VOn '[0 (VonZ _az)(v()mZ _az)
+lmjkg(mabvo”)g(mab%m ( —tz)

0 (VO,, — k% + ¢ )(v —k*+¢ )

Ny 104g(\/t +k%;a,b;v,)g(Nt? +k?;a,b;v,, (\/vOn —kz)
dt
k2

dt

+J-0 (w/v()n —k? +t)[t (vOm —kz)}
. g(Nt? +k;a,b;v,,)g(Nt + k% ;a,b;v,, (\/vo,, - )
+J' — dt
P K2 410 (mﬂ)[ v _kz)
el { : : } (7.13)

+ + ,
27[ (LZ + kz ) aYO (VOma)YEJ (VOna) bYEJ (VOmb)KJ (VOrtb)
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APPENDIX: EVALUATION OF INTEGRALS FOR SECTION 3

We first observe that, from (2.5) and (2.7)

[" Py, (P)dp =Py, (p)

=0, (A.1)

We next evaluate the integral

[ Py, (P) OJo(ap) I Kl { Jove p)~ Tl y p)} N@p)
“ p p “p Y, (vo,@) Pp
b J (v, a
:aVOmJ- Jl(VOmp)_MYl(VOmp) Ji(ap) pd p
“ YO(VOma)
b J V. d b
=av,, J Jl(vomp)Jl(ap)pdp—O(O’")f Y (o, p) ) (ap)pdp . (A2)
“ Y;)(VOma) “

Using standard formulas (reference 3, p. 87), we proceed to evaluate the last two integrals

b OP, oJ, (¢ ayv,
[ FonlP)IP) gy Doty T () (00) ~ 0, (v )T ()
“« ap op Vo —€

_ JO (VOm a)

b
a

[VomYz (Vou ), (ap) — Y, (v, P)/, (ap)]}

)/O(VOma)
ayv J, (v, a
zzomzp{VOm |:J2(V0mp)_O(OM)YZ(VOmp):|J1(ap)
Om -a YO(VOrna)
J, (v, a
_a|:Jl(V0mp)_O(OWl)Y;.(VOmp):|J2(ap) .
)IO(VOma)
av,, 2 Jo (v, a Jo(vy,,a
= 20 pz |:J1(V0mp)_O(O)Y]_(VOmp):|_V0m |:JO(VOmp)_O(O)YO(VOmp):| Jl(ap)z
VOm - ,0 YO(VOma) YO(VOMa)
a’y, J,(v,,a) 2
- 2 o 2 p Jl(VOnzp)_le(VOmp) 7Jl(ap)_']0(ap) 2
Vow —Q Y, (vo,@) op
a’v J, (v, a
T A B GRS Y VAL
VOm - YO(VOma)
a’v, J,(v,,b) Jo (V@)
=W _Jpl J (v, b)—="2Ly (v b)) |J, (ab)—al| J, (v, a)——"""2Y (v, a)|J,(aa
Vomz_az 1( Om ) YEJ(VOmb) 1( Om ) o( ) 1( Om ) Yo(Voma) 1( Om ) o( )

(A.3)

or
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J.b POm (p) é)JO (ap)
“«  Jgp ap

_ 2a° { Jolaa)  Jy(ab) } (A4)
7(@ =vo,t ) [ %6 (0n@) % (v5,0)
Finally, we compute

Jb §P0m (10) ﬁPOn (ap)
a«  Jp ap

_vomvo,l.[ {] Vo, P) — ‘;((“//Om ))Y( Omp)}{]( Vo, P) — Jo (v,9)

Y, (v, a )Y(Vonp)}pdp
= VomVon {jle(VomP)Jl(VonP)Pdp J0(%0,4)

Y, (v, J 500, 0)1(vo, P) pd p
;((:;)a)f I, (Vou P) Y, (V, ) P p + ;((V;’:z))‘;((:z“)j l(v()mp)Y(VOn,o)pdp}

(A.5)
If we proceed to complete this calculation, we will find that the result is zero. On the other hand
if m =n, then

J.;|:ﬂ)0;7()ap):| pdp = VOnZJ.:|:J1(VOnp)_ 7o(V,4)

Y (v a )Y(vonp)} pdp

= Vo, {J:[Jl(vonp)]z pdp - ZIJ/((VO"Q)J J, Vo, P)Y, (vo, p) pd p

Jo(Vo, s oo 2
{YO((:OZ))} [ 0,0 pdp}-

(A.6)
Proceeding with the same kind of formulas as above, we find
2
b| OP,
a ap
2 J, (v, a) ’
2 n 2
= Vo, {’;l(fl(vonm) 3 (va,P)s <v0np)+u(vf;@} {(%.0,0)) —Yz(vonmmvonp)}}
J
o00) %15 ) 1 015,V 0) =T s VY Vo ) — T (s Y, (vonp)]}
Y(VOna) 2
v, 2 p?
=t P { (1o, ) — 22 on)

Jo (v, @)
Vv )Y(von/?)}J (Vo.P) — [J Vo, P) — Vo(voa )Y (v%p)}] )
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- {/g)’ J (Vo) - é((:)) ﬁ(vo,,p)}z(vonp)

+ ‘;(‘)) J (Vou) - ‘;(()) Y, (vo,,p)} Y, (vonm}
- Vzp{f (VouP) - mxwonp)}a o)
- B((:))MJ (Vou) - ‘;((j)) Yl(vonp)}z(vo,,p)} ’;
- Zp : {Jl(vo,,m - ‘;(()) Yl(vonp)}z iz

2 2 2
Vo b 2 B a 2
2 )/O (VOnb) ”VOnb YO (VOna) ﬂ-VOna

or

o Py, (ap) T 2] 1 !
TP g p= - '
L{ P }p g ”2{[%(%,,17)]2 [Yo(Vona)]z}
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PART 4
NOTES ON COMPUTING THE INFINITE SYSTEM OF EQUATIONS

ABSTRACT

This is the fourth, and final, part of the report on the formulation of the problem of radiation of
a coaxial line into a half space in terms of BIEs. In it, we give a detailed presentation of how we
compute the infinite system of equations. Specifically, we truncate the infinite system and
consider finite systems of dimensions from 1x1 to 11x11. We examine the convergence of the
coefficients of these systems for four different coaxial lines and use them in computing far-field
quantities, such as directivity and gain.

115



NAWCADPAX/TR-2013/115

1. INTRODUCTION: WHAT IS TO BE COMPUTED

We use here the results of Part 3 to compute the radiated fields of a coaxial transmission line
that opens into a half space. We use Mathematica® (reference 1) in all computations. In this

section we assign values to all relevant parameters.

We set the characteristic impedance of the coaxial line at 50 Q; thus,

In(;()= Ho In(b/a)
2 & 2

50=2, =7,

From this

b_ g0l — 9 3023

a

Z:
or
a
=—=0.4343.
P 0

For all modes (except the TEM) to be suppressed

a+b

k <1

or
b
kb <1.3944 or 7 <0.2219.

We set 4 =1 (300 MHz) and give b the values shown in Table 1.1.

Table 1.1. Values of the parameters for the numerical computation (4 =1).

Case b (m) a (m) kb ka
1 0.05 0.021715 0.314159 0.136439
2 0.10 0.043430 0.628319 0.272879
3 0.15 0.065145 0.942478 0.409318
4 0.20 0.086860 1.256637 0.545757

116

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)



NAWCADPAX/TR-2013/115

2. FIRST INTEGRAL
In this section, we compute the integral in (4.22) of Part 3. The imaginary part is the sum of
two integrals. Both were computed in Mathematica® (reference 1). Their sum is given in Table
2.1 for the four different coaxial lines in Table 1.1.

Table 2.1. Numerical results for integral 7,,, the imaginary part of (4.22).

Case I,
1 - 0.0000420305 i
2 - 0.000649198 i
3 -0.00309862 i
4 -0.00901561 i

The result for the second line in (4.22) is shown in Figure 2.2.

Table 2.2. Numerical results for integral 1, , the real part of (4.22).

Case L,
1 0.0136816
2 0.0285517
3 0.0452372
4 0.0634187

The entire integral in (4.22) is shown in Table 2.3.

Table 2.3. Numerical results for integral 1, the entire expression in (4.22).

Case A

1 0.0136816 - 0.0000420305 i
2 0.0285517 - 0.000649198 i
3 0.0452372 - 0.00309862 i

4 0.0634187 - 0.00901561 i
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The second integral appears in (5.20) of Part 3. We compute this integral for the four cases in

3. SECOND INTEGRAL

Table 1.1 and the first 10 roots of the transcendental equation

Jo (v, @)Yy (vy,0) = Jo (v, 0) Yy (v4,a) = 0.

The roots for the four cases have been computed in Mathematica® (reference 1). We observe that
each successive case (column) is equal to the first one divided by the number of the column. We
note that Mathematica® has a subroutine that finds the roots of this equation but we did not take

advantage of it.

Table 3.1. First ten roots of the transcendental equation (3.1)

Root No. Case 1 Case 2 Case 3 Case 4
1 110.131 55.0656 36.7104 27.5328
2 221.636 110.818 73.8786 55.4089
3 332.867 166.434 110.956 83.2168
4 444.02 222.01 148.007 111.005
5 555.14 277.57 185.047 138.785
6 666.243 333.122 222.081 166.561
7 177.337 388.668 259.112 194.334
8 888.424 444,212 296.141 222.106
9 999.508 499.754 333.169 249.877
10 1110.59 555.294 370.196 277.647

The entire expression (5.20) is computed in Mathematica®. The results are displayed in Tables

3.2.1 through 3.2.5.

Table 3.2.1 Numerical results for integral 7,, the expression (5.20) (roots 1 and 2)

Root
Case 1 2
1 1.26328 + 0.0036659 i - 2.07424 + 0.000668069 i
2 1.22771 + 0.0277552 i - 2.06343 + 0.00443626 i
3 1.18825 + 0.0853679 i - 2.03808 + 0.0109216 i
4 1.16772 + 0.177285 i -1.99193 + 0.0109216 i
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Table 3.2.2 Numerical results for integral 7,, the expression (5.20) (roots 3 and 4)

Root
Case 3 4
1 17.9066 + 0.0147716 i 4.7176 — 0.000653382 i
2 17.7639 + 0.111543 i 4.70708 — 0.00433879 i
3 17.6066 + 0.341594 i 4.68246 — 0.0100815 i
4 17.5259 + 0.705258 i 4.63767 —0.0107471 i

Table 3.2.3 Numerical results for integral 7,, the expression (5.20) (roots 5 and 6)

Case

Root

5

6

1

- 3.52255 - 0.00168172 i

3.76781 - 0.00032758 i

- 3.50631 - 0.0126963 i

3.76253 - 0.00217531 i

- 3.48842 - 0.0388686 i

3.7502 - 0.00505523 i

2
3
4

- 3.47925 - 0.0802122 i

3.72778 - 0.00539464 i

Table 3.2.4 Numerical results for integral /,, the expression (5.20) (roots 7 and 8)

Root
Case 7 8
1 -11.0512 - 0.00370696 i -11.7554 + 0.00074151 i
2 -11.0154 - 0.0279843 i - 11.7434 + 0.00492407 i
3 -10.9759 - 0.0856635 i -11.7155 + 0.0114437 i
4 - 10.9557 - 0.17676 i - 11.6648 + 0.0122167 i

Table 3.2.5 Numerical results for integral 7,, the expression (5.20) (roots 9 and 10)

Root
Case 9 10
1 5.31419 + 0.00137324 i - 4.72606 + 0.000233462 i
2 5.30092 + 0.0103665 i - 4.72226 + 0.00155033 i
3 5.28632 + 0.031732i - 4.71348 + 0.00360309 i
4 5.27883 + 0.0654731 i - 4.69751 + 0.0038471 i
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The third integral is given by (6.3) in Part 3. The entire expression is computed in

4. THE THIRD INTEGRAL

Mathematica®. The results are displayed in Tables 4.1.1 through 4.1.5.

Table 4.1.1 Numerical results for integral 7,, the expression (6.3) (roots 1 and 2)

Root
Case 1 2
1 - 0.00354536 + 0.0000333409 i 0.00433068 + 3.01548*10° i
2 - 0.00772607 + 0.000507352 i 0.00875998 + 0.0000400965 i
3 - 0.0141551 + 0.00236027 i 0.0136065 + 0.000139937 i
4 -0.0219913 + 0.00661357 i 0.0191409 + 0.000198389 i

Table 4.1.2 Numerical results for integral 7,, the expression (6.3) (roots 3 and 4)

Root
Case 3 4
1 - 0.0057484 + 0.0000443849 i - 0.00269068 - 1.47166*107° i
2 -0.0119776 + 0.000670672 i - 0.00543566 - 0.0000195511 i
3 - 0.0199091 + 0.0030836 | - 0.00797123 - 0.0000681768 i
4 - 0.026884 + 0.00849921 | - 0.011534 - 0.0000969721 i

Table 4.1.3 Numerical results for integral 7,, the expression (6.3) (roots 5 and 6)

Case

Root

5

6

1

0.000420177 - 3.02957*107° i

-0.00102198 - 4.91704*107 i

0.000916501 - 0.0000457526 i

- 0.00206025 - 6.53125*10° i

0.0014815 - 0.000210169 i

- 0.00314133 - 0.0000227721 i

2
3
4

0.00234308 - 0.000578554 i

- 0.00434858 - 0.0000324115 i

Table 4.1.4 Numerical results for integral 7,, the expression (6.3) (roots 7 and 8)

Root
Case 7 8
1 0.000739879 - 4.76895*10° i 0.00185938 + 8.34656*10™" i
0.00154382 - 0.0000720099 i 0.00374666 + 0.000011086 i

0.00231508 - 0.000330701 i

0.00562887 + 0.0000386513 i

AlWIN

0.00340646 - 0.000910044 i

0.00785099 + 0.0000550258 i
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Table 4.1.5 Numerical results for integral 7,, the expression (6.3) (roots 9 and 10)

Root
Case 9 10
1 - 0.000201699 + 1.37394*10° i 0.000498893 + 2.10218*107 i
2 - 0.000431858 + 0.0000207448 i 0.00100607 + 2.79208*10° i
3 - 0.000688448 + 0.0000952597 i 0.0015313 + 9.73432*10° i
4 - 0.00108081 + 0.000262104 i 0.00210175 + 0.0000138596 i

121



NAWCADPAX/TR-2013/115

5. THE FOURTH INTEGRAL

The fourth integral is given by (7.1) in Part 3, and in computable form by (7.13). The result in
(7.13) depends not only on the index m but also on the index n. Since »n runs from 1 to 10, we
have 10 times as much data as in the previous cases. For this reason, we do not form tables but,
rather we display the raw data from Mathematica®. For the first 10 roots, we have

{{{-0.566603+0.002908 1,0.00857833 +0.000529959 i, -
5.38481+0.0117177 1,-0.0107252-0.000518308 1,0.81978 -0.00133404
i,-0.00604899-0.000259859 i,2.12689 -0.00294057 i,0.0147767
+0.000588217 i,-0.879104+0.00108933 i,0.00491084 +0.000185199
i},{0.00425818 +0.000263014 i,-0.840763+0.0000479381 i,0.0279246
+0.00105982 i,1.54291 -0.0000468842 i,-0.00367476-0.000120658
i,1.03996 -0.0000235059 i,-0.00880162-0.000265962 i, -
2.82511+0.000053208 i,0.00344896 +0.0000985254 i, -
1.01075+0.0000167524 i},{-1.77903+0.00387126 i,0.0185789
+0.00070551 i,-25.442+0.0155992 i,-0.0222245-0.00069 i,4.5937 -
0.00177594 1,-0.0122724-0.000345938 1,13.1365 -0.00391463
i,0.0295536 +0.000783066 1i,-5.7899+0.00145017 1,0.00974883
+0.000246546 i},{-0.00265561-0.000128361 i,0.769935 -0.0000233956
i,-0.0166423-0.00051723 i,-1.64689+0.0000228813 i,0.00215396
+0.0000588857 i,-1.20977+0.0000114717 i,0.00510935 +0.000129799
i,3.47599 -0.0000259675 i,-0.00198939-0.000048084 i,1.29426 -
8.17578x10° i},{0.162381 -0.000264239 i,-0.00146457-0.0000481557
i,2.75418 -0.00106475 i,0.00172414 +0.0000470971 i, -
0.543394+0.000121219 1,0.000942938 +0.0000236126 1, -
1.64399+0.000267199 i,-0.00226252-0.0000534495 i,0.753789 -
0.0000989835 1,-0.000741743-0.0000168284 i},{-0.000998465-
0.0000428871 1,0.345853 -7.81679%x10° 1,-0.00613222-0.000172814
i,-0.806248+7.64495x10° 1,0.000787625 +0.0000196745 i, -
0.625213+3.83287x10° 1,0.00186647 +0.0000433678 1,1.86557 -
8.6761x10° 1i,-0.000725125-0.0000160655 i,0.71443 -2.73165x10°
i},{0.300869 -0.000415949 i,-0.00250545-0.0000758037 i,5.62488 -
0.00167606 1,0.00292745 +0.0000741373 1,-1.1741+0.000190816
i,0.00159898 +0.0000371694 i,-3.69107+0.000420608 i,-0.00382792-
0.0000841368 1,1.74081 -0.000155814 1i,-0.00125978-0.0000264902
i},{0.00182884 +0.0000727999 i,-0.704602+0.0000132688 i,0.0110647
+0.000293348 i,1.73733 -0.0000129771 i,-0.00141593-0.0000333971
i,1.39912 -6.50621x10° i,-0.00334119-0.0000736159 i, -
4.29179+0.0000147275 1,0.00129871 +0.0000272709 i, -
1.67888+4.63691x10° i},{-0.0967212+0.000119835 i,0.000762736
+0.0000218391 i,-1.92827+0.000482874 i,-0.000885603-0.000021359
i,0.418727 -0.0000549743 i,-0.000481306-0.0000107086 i,1.35405 -
0.000121178 1,0.00115215 +0.0000242399 1i,-0.652457+0.0000448901
i,0.000377498 +7.63187x10° i},{0.000486278 +0.0000183356 i, -
0.201679+3.34192x10° 1,0.00292129 +0.0000738832 1,0.51754 -
3.26845x10° 1,-0.000372048-8.41147x10° i,0.428674 -1.63867x10°
i,-0.000880994-0.0000185411 i,-1.34322+3.7093%x10° 1,0.000341725
+6.86851x10° 1,-0.53434+1.16786x10° 1}},{{-0.544135+0.0216915
i,0.00803394 +0.00346806 i,-5.29309+0.0871752 i,-0.0102082-
0.00339188 1,0.809014 -0.00992268 1i,-0.00579225-0.00170056
i,2.10209 -0.0218709 i,0.0141846 +0.00384942 i, -
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0.869407+0.00810185 1,0.00472671 +0.00121198 i}, {0.00397402
+0.00171479 i,-0.835292+0.000274929 i,0.0268598 +0.00689244
i,1.53667 -0.000268894 i,-0.00355686-0.000784538 i,1.0361 -
0.000134814 1,-0.00853931-0.00172923 1,-2.81408+0.000305168
i,0.00335349 +0.000640577 i,-1.00638+0.0000960814 i}, {-
1.74106+0.0286746 1,0.0178479 +0.00458514 i,-25.2715+0.11524 i, -
0.0215319-0.00448442 1,4.57028 -0.0131171 1,-0.011922-0.00224833
i,13.072 -0.0289119 i,0.0287416 +0.00508934 i,-5.75974+0.0107101
i,0.00948526 +0.00160237 i},{-0.0025154-0.000836135 i,0.766117 -
0.000134058 1,-0.0161017-0.00336077 1,-1.64139+0.000131116
i,0.00209031 +0.000382542 1i,-1.20557+0.0000657369 1,0.00495753
+0.000843177 i,3.46201 -0.000148803 i,-0.00192969-0.000312347
i,1.28809 -0.0000468503 i},{0.159489 -0.00195615 i,-0.001414-
0.000312798 1,2.73914 -0.00786156 1,0.00167437 +0.000305926 1, -
0.540922+0.000894839 1,0.000917494 +0.00015338 1, -
1.63608+0.00197235 i,-0.00219693-0.000347194 i,0.749676 -
0.000730635 1,-0.000720989-0.000109313 i},{-0.000951622-
0.00027932 1,0.344182 -0.0000447838 1,-0.00595562-0.0011227 1, -
0.803284+0.0000438008 1,0.000768246 +0.000127793 1, -
0.622639+0.0000219602 1,0.001819 +0.000281673 1,1.85637 -
0.0000497095 1,-0.00070751-0.000104343 1,0.710204 -0.0000156509
i},{0.295914 -0.00307878 i,-0.00242454-0.000492313 i,5.5944 -
0.0123733 1,0.0028485 +0.000481498 1,-1.16828+0.00140839
i,0.00155717 +0.000241406 i,-3.67066+0.00310427 i,-0.0037231-
0.000546449 1,1.72959 -0.00114995 1,-0.0012235-0.000172048
i},{0.00174669 +0.000474114 i,-0.70098+0.0000760155 i,0.0107399
+0.00190566 i,1.72976 -0.000074347 i,-0.0013748-0.000216913
i,1.39203 -0.000037275 i,-0.00323485-0.000478107 i, -
4.26555+0.0000843763 1,0.0012527 +0.00017711 i, -
1.66659+0.0000265657 i},{-0.0951797+0.000886947 i,0.000738688
+0.000141827 i,-1.91701+0.00356454 i,-0.000859986-0.000138712
i,0.416318 -0.000405732 i,-0.000466894-0.0000695451 i,1.3451 -
0.000894289 1,0.00111042 +0.000157423 1,-0.64739+0.00033128
i,0.00036287 +0.0000495643 i},{0.000465729 +0.000119408 i, -
0.200534+0.000019145 1,0.0028385 +0.000479952 1,0.514829 -
0.0000187247 1,-0.000362402-0.0000546309 1,0.426016 -9.38793x10
i,-0.000853457-0.000120414 i,-1.33318+0.0000212507 i,0.000330501
+0.0000446062 1,-0.529591+6.69072x10° i}},{{-0.523709+0.0650368
i,0.0022977 +0.00786479 i,-5.21129+0.26026 i,-0.00464348-
0.00769733 1,0.799647 -0.0296142 1,-0.00300696-0.00385971
i,2.08124 -0.0652676 1i,0.00788145 +0.00873736 i, -
0.861588+0.0241768 1,0.00274315 +0.00275099 i},{0.00113137
+0.00386437 i,-0.826442+0.000480635 i,0.0156485 +0.0154798
i,1.5279 -0.000470437 i,-0.00228503-0.00176153 i,1.03156 -
0.000235897 1,-0.00574097-0.00388238 1,-2.80337+0.000534009
i,0.002319 +0.00143815 i,-1.00283+0.000168135 i}, {-
1.70148+0.0849746 1i,0.0103677 +0.0102862 i,-25.1102+0.340059 i, -
0.0142872-0.0100672 1,4.55118 -0.0386942 1,-0.00829791-0.00504806
i,13.0274 -0.0852795 1i,0.0205462 +0.0114275 i,-5.74204+0.0315897
i,0.00690648 +0.00359798 i},{-0.00113422-0.00188271 i,0.760584 -
0.000234183 1,-0.0106512-0.00754175 1,-1.63568+0.000229214
1,0.00146939 +0.000858217 1i,-1.20244+0.000114937 1,0.00358463
+0.00189149 i,3.45405 -0.000260189 i,-0.00141951-0.000700664
i,1.28524 -0.0000819216 i},{0.156387 -0.00579165 i,-0.000903337-
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0.000701136 1,2.72612 -0.0231776 1,0.00117898 +0.000686209 1, -
0.539298+0.0026373 1,0.000669242 +0.000344089 i, -
1.63204+0.00581244 i,-0.00163336-0.000778926 i,0.74795 -
0.00215308 1,-0.000543438-0.000245248 i}, {-0.000490266-
0.000628855 1,0.342058 -0.0000782216 i,-0.00414459-0.00251906 1, -
0.800967+0.000076562 1,0.000563258 +0.000286658 1, -
0.621272+0.0000383913 1,0.00136826 +0.000631788 i,1.85263 -
0.0000869081 1i,-0.000541296-0.000234033 1,0.708767 -0.0000273634
i},{0.290601 -0.00911319 i,-0.00162162-0.00110327 i,5.57123 -
0.0364701 1,0.00207271 +0.00107978 1,-1.16521+0.00414982
1,0.00116998 +0.000541438 i,-3.66245+0.00914592 i,-0.00284932-
0.00122567 i,1.72585 -0.00338789 1,-0.000949291-0.000385908
i},{0.000962164 +0.00106736 i,-0.696984+0.000132767 1i,0.00765227
+0.00427563 i,1.72511 -0.00012995 i,-0.00102291-0.000486548
i,1.38908 -0.0000651623 1i,-0.002456-0.00107234 i, -
4.25691+0.000147511 1,0.0009628 +0.000397226 1i,-
1.66309+0.0000464444 i},{-0.0935508+0.00262509 i,0.000506765
+0.000317803 1,-1.90956+0.0105053 1,-0.000634578-0.000311037
i,0.415259 -0.00119537 1,-0.000353581-0.000155965 i,1.34207 -
0.00263452 1,0.000851885 +0.000353063 i,-0.645931+0.000975894
i,0.000281057 +0.000111163 i}, {0.000268097 +0.000268815 i, -
0.199436+0.0000334374 1,0.00206333 +0.00107682 i,0.513462 -
0.0000327279 1,-0.000274645-0.000122537 1,0.425085 -0.0000164111
i,-0.000659985-0.000270069 i,-1.3303+0.0000371506 i,0.000259113
+0.000100041 1i,-0.528378+0.000011697 i}},{{-0.523207+0.13013 1i,-
0.0114275+0.00814608 1i,-5.20929+0.517813 1,0.00867961 -0.00801511
1,0.799399 -0.0588946 1,0.00366306 -0.00402319 1i,2.08062 -
0.129784 1,-0.00720973+0.00911082 1i,-0.861324+0.048073 1, -
0.00200699+0.00286904 i}, {-0.00556127+0.00396658 i, -
0.812806+0.000350881 1i,-0.0106277+0.0158966 i,1.5146 -0.000344593
i,0.00069799 -0.00180902 1i,1.02485 -0.000172904 i,0.000825982 -
0.00398707 1,-2.78805+0.000391499 1,-0.000111212+0.00147693 1, -
0.997943+0.000123278 i},{-1.68285+0.167279 i, -
0.00709115+0.0105464 1i,-25.0354+0.665716 1,0.00264411 -0.0103764
i,4.54241 -0.0757173 1,0.000175133 -0.00520837 i,13.0072 -
0.166856 1,0.00138282 +0.0117947 1i,-5.73413+0.0618049
i,0.000876203 +0.00371421 i},{0.00210141 -0.00193866 i,0.752356 -
0.000171171 1,0.00204888 -0.00776907 i,-1.62757+0.000168105
1,0.000025202 +0.00088411 1i,-1.19828+0.0000843491 i,0.00039908
+0.00194857 i,3.44434 -0.000190989 i,-0.000238183-0.000721811
i,1.28206 -0.0000601397 i},{0.154562 -0.0113872 i,0.000285326 -
.000718316 1,2.71868 -0.0453177 1,0.0000255571 +0.000706732 1i,-
.538402+0.00515435 1,0.0000914928 +0.000354741 1i,-
.6299+0.0113585 1i,-0.000324936-0.000803336 i,0.747076 -
.00420728 1,-0.000131303-0.000252974 i}, {0.000589496 -
.000647953 1,0.338976 -0.0000571887 1,0.0000823688 -0.00259662
i,-0.797887+0.0000561646 1,0.0000838364 +0.000295491 i, -
0.619656+0.0000281813 1,0.000313557 +0.000651262 1i,1.84875 -
0.0000638099 1i,-0.000151385-0.000241247 1,0.707452 -0.0000200929
i},{0.28715 -0.0179117 1,0.000247122 -0.00113006 i,5.55689 -
0.0712836 1,0.000262664 +0.00111184 i,-1.16342+0.00810767
i,0.000265133 +0.000558081 i,-3.65799+0.0178667 i,-0.000805087-
0.00126381 i,1.72394 -0.00661796 1,-0.000306815-0.000397979 i}, {-
0.000871399+0.00110004 1,-0.691327+0.0000970764 i,0.000468113
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+0.00440829 i,1.71936 -0.000095338 i,-0.000206034-0.000501657
i,1.38597 -0.0000478371 i,-0.000653892-0.00110565 i, -
4.2492+0.000108316 1,0.000294315 +0.000409566 i, -
1.66038+0.0000341072 i},{-0.0924306+0.00515881 i, -
0.0000320495+0.000325492 1,-1.9048+0.0205307 1,-0.000111555-
0.000320243 1,0.414644 -0.00233512 1,-0.0000913684-0.000160745
i,1.34047 -0.00514585 i,0.000257298 +0.000364017 i, -
0.64522+0.00190606 1,0.000093544 +0.000114631 i}, {-
0.000193758+0.000277071 1,-0.197922+0.0000244496 1,0.000256923
+0.00111033 i,0.511888 -0.0000240118 i,-0.0000697322-0.000126354
i,0.424209 -0.0000120483 i,-0.000208931-0.000278484 i, -
1.32805+0.0000272804 1i,0.0000923197 +0.000103159 i, -
0.527559+8.59024x10° 1}}}
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6. THE SYSTEM OF EQUATIONS

The infinite system of equations is given by (3.13) and (3.14) in Part 3. We can solve it by
truncating it to a finite system of equations. What we have done is to work with a 1x1 system
(returning TEM mode only) up to a 11x11 system. For systems of order higher than this, we need
to compute the integrals above for more roots of the transcendental equation (3.1).

Since we stop with a 11x11 system, we examine the convergence of the first four coefficients
as a function of the order of the system for each of the four coaxial lines in Table 1.1. In Figures
6.1 and 6.2, we display the real and imaginary part, respectively, of the coefficient 4 as a
function of the order of the system. We see that, for engineering purposes, 4 has stabilized for
the 11x11 system and for all four coaxials. If we put these results under the microscope,
however, we may conclude that the data has converged to at most two significant digits, as seen
from Figures 6.3 and 6.4.

We see that, as the radii of the coax get larger, the reflection coefficient becomes smaller in
magnitude. This means that more energy escapes into the upper-half space. This will become
evident when we compute the gain of the coaxial line as an antenna.

1 \

Real Part of Reflection Coefficient4

Order of System of Equations

Figure 6.1. The real part of the reflection coefficient 4 as a function of the order of the
system of equations. The smallest system is 1x1 and the largest 11x11.
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-0.1

Imaginary Part of Reflection Coefficient 4

Order of System of Equations

Figure 6.2. The imaginary part of the reflection coefficient A4 as a function of the order
of the system of equations. The smallest system is 1x1 and the largest 11x11.
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Figure 6.3. Detailed version of Figure 6.1. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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Figure 6.4. Detailed version of Figure 6.2. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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In Figures 6.5 through 6.8, we present the convergence of coefficient B;. Again, we have
convergence to two significant digits.
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Figure 6.5. The real part of coefficient B; as a function of the order of the system of equations.
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Figure 6.6. The imaginary part of coefficient B; as a function of the order of the system of
equations. The top curve is for Case 1 (smallest coaxial), the one below it for Case 2, and so on.
The smallest system in this case is the 2x2.
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Figure 6.7. Detailed version of Figure 6.5. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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Figure 6.8. Detailed version of Figure 6.6. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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In Figures 6.9 through 6.12, we examine the convergence of coefficient B,. The results are
displayed in Figures 6.9-6.12 and, again, we get convergence to two significant digits.
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Figure 6.9. The real part of coefficient B, as a function of the order of the system of equations.
The smallest system is 3x3 and the largest is 11x11.
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Figure 6.10. The imaginary part of coefficient B, as a function of the order of the system of
equations. The smallest system is 3x3 and the largest 11x11.
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Figure 6.12. Detailed version of Figure 6.10. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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In Figures 6.13 through 6.16, we examine the convergence of coefficient Bs. Convergence
appears to be to two significant digits.
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Figure 6.13. The real part of coefficient B as a function of the order of the system of equations.

The smallest system is 4x4 and the largest 11x11.
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Figure 6.14. The imaginary part of coefficient Bs as a function of the order of the system of
equations. The top curve is for Case 1 (smallest coaxial), the one below it for Case 2, and so on.
The smallest system in this case is the 4x4.
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Figure 6.15. Detailed version of Figure 6.13. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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Figure 6.16. Detailed version of Figure 6.14. Case 1 is the top left graph. Case 2 is the top right,
Case 3 the bottom left and Case 4 the bottom right.
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In Figure 6.17, we have plotted the magnitude of the coefficients B; to Bip, normalized to the
magnitude of the reflection coefficient 4. The numbers for the coefficients came out of the 11x11
system. As we saw above, the accuracy of these coefficients does not go beyond the first couple
of digits. This graph, however, is useful in displaying their order of magnitude relative to that of
A.

10

Ratio of Magnitude of Coeff. B to That of Reflection Coeff. 4

2 4 6 8 10

Index (subscript) of Coefficient Bj

Figure 6.17. Magnitude of coefficients B; to By relative to that of reflection coefficient 4.
The numbers are those of the 11x11 system.

In Figure 6.18 we plot the real part of A on the horizontal axis and the imaginary on the
vertical. The values of the four coax cases are plotted and connected in sequence using straight-
line segments. It is clear that, as the dimensions of the coax increase, the real part of A decreases
while the absolute value of the imaginary part increases.
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Figure 6.18. The real and imaginary parts of the reflection coefficient 4 for the four coax sizes.
The four computed points are connected using straight-line segments.

From Figures 6.19 and 6.21, for B; and Bs, both the real part and the absolute value of the
imaginary part increase.

From Figure 6.20, both the absolute value of the real part and the imaginary part of B;
increase.
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Figure 6.19. The real and imaginary parts of the reflection coefficient B; for the four coax sizes.
The four computed points are connected using straight-line segments.
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Figure 6.20. The real and imaginary parts of the reflection coefficient B, for the four coax sizes.
The four computed points are connected using straight-line segments.
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Figure 6.21. The real and imaginary parts of the reflection coefficient B3 for the four coax sizes.
The four computed points are connected using straight-line segments.
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7. FAR FIELD

In this section we compute quantities related to the far field. The far field is given by (7.22)
and (7.23) of Part 2. For the calculations, we use the coefficients 4, Bi, B,, and Bs. We compute
far-field amplitude and phase, far-field intensity (average radiated power density), total radiated

average power, directivity, and gain. The definitions we used are the following.

Far-field amplitude and phase:

FarFieldAmplitude = | F(9)

Imi{F
FarFieldPhase = tan™ {m{(g)}}

Re{F(9)}

where, from (7.22) of Part 2,

1+ A Jy(kasin9) —J,(kbsin 9)
In(y) sin g

L2KSing & Vo, —k° [Jo(kasinﬂ)_Jo(kbsinQ)}

T Sy, P-ksin? @] Yy (v,,a) Y, (v,,b)

F(9) =

Far-field intensity (reference 2, p. 38):

. P’
FarFieldIntensity = ———.
27,

Total radiated average power (reference 2, p. 38):

F(9)

TotalRadiatedAveragePower = _[02” dgo.[:m dgsing

Directivity (reference 2, p. 39):

T FarFieldIntensity FarFieldIntensity
Directivity = - =2r - .
TotalRadiatedAveragePower TotalRadiatedAveragePower
2z

Average input power:
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v:e o1
AveragelnputPower = 57 100 (7.7)

since the characteristic impedance of the line is 50 Q and the input is one Volt.
Gain (reference 2, p. 58):

_ FarFieldIntensity
~ AveragelnputPower

2

Gain = 27 x FarFieldIntensityx 100 . (7.8)

With these definitions, we proceed to display some of the calculations we performed. We
begin with the far-field amplitude. The results are shown in Figure 7.1. The polar angle & is
measured from the perpendicular to the infinite plane toward the plane (i.e., it is equal to 90 deg
minus elevation). We see that, as the dimensions of the line increase, so is the energy that
escapes into the upper-half space. Equivalently, as the operating frequency approaches the cut-
off frequency, more and more energy escapes into the upper half space.

0.7

0.6 —

Far-field Amplitude
o o

IN ol

\

o
w

Polar Angle @ (deg)
Figure 7.1. Far-field amplitude for the four coaxial cases.
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Figure 7.2 shows the phase of the far field. The four different cases are shown separately
because of the slow variation of phase. As the size of the coax increases, so does the variation.
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Figure 7.2. Far-field phase for the four coaxial cases.
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The results for directivity are shown in Figure 7.3. The variation in the four cases is small but
there is a clear tendency for the directivity to rise as the coaxial gets bigger.
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Figure 7.3. Directivity (dB) of four coaxials. Case 1 is the bottom figure while Case 4 is the
top one. The rest follow in a clockwise fashion.
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The gain results are shown in Figure 7.4. Clearly, the gain improves toward the horizon and
with increasing coaxial size.

0

Gain (dB)

Polar Angle 6 (deg)
Figure 7.4. Variation of gain with polar angle for the four coaxials.

We have performed additional calculations that appear in the paper that came out of this study
(reference 3). There, we compared the coefficient 4 to that obtained by Bird (reference 4) and
found it to be in agreement to two significant digits in all four cases. We also computed gain
relative error when using only the 1x1 system rather than the 11x11, and we did the same for the
normalized admittance at the opening to the half-space.
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CONCLUSIONS

We have solved the classical problem of radiation by a coaxial line using BIEs. Because of the
circular symmetry in the geometry, we can convert the vector integral equations to three scalar
equations and we show that, the solution of any of these will determine the unknown current
density. We express the latter as an infinite series in the modes of the coaxial line and we
determine the unknown coefficients by taking advantage of the orthogonality of the modes. This
results in an infinite system of linear equations with the unknowns being the coefficients of the
infinite series. In the last part of the report, we have presented numerical examples. The principal
asset of this method is that we can provide an engineering solution to the problem by truncating
the infinite system to a small system of linear equations. In Part 4, the largest system we used has
11 unknowns (11x11). By contrast, use of other, well known numerical methods, such as finite
elements or the method of moments or a hybrid of the two, would require solution of systems
with hundreds if not thousands of unknowns. In closing, we wish to mention, that the precise
same method can be applied to radiation from a circular or rectangular waveguide or any other
guide whose natural modes are known analytically.
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